REFERENCES
(1) Barrow, S. J.; Kasera, S.; Rowland, M. J.; Barrio, J.; Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Soc. Rev. 2015, 115, 12320–12406.
(2) Assaf, K. I.; Nau, W. M. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015, 44, 394–418.
(3) Ni, X. L.; Xiao, X.; Cong, H.; Liang, L. L.; Cheng, K.; Cheng, X. J.; Ji, N. N.; Zhu, Q. J.; Xue, S. F.; Tao, Z. Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 2013, 42, 9480–9508.
(4) Gurbuz, S.; Idris, M.; Tuncel, D. Cucurbituril-based supramolecular engineered nanostructured materials. Org. Biomol. Chem. 2015, 13, 330–347.
(5) Ni, X. L.; Xiao, X.; Cong, H.; Tao, Z. Supramolecular assemblies of cucurbit[n]urils with metal ions: coordination, structures and properties. Springer 2015.
(6) Hu, J. X.; Hu, Y. F.; Xiao, X.; Zhang, Y. Q.; Tao, Z.; Xue, S. F.; Liu, J. X.; Zhu, Q. J. Coordination of pentacyclohexanocucurbit[5]uril with alkali metal ions and supramolecular self-assembly in the absence and presence of inorganic anions. Eur. J. Inorg. Chem. 2013, 3632–3640.
(7) Li, H. F.; Lu, J.; Lin, J. X.; Cao, R. Monodispersed Ag nanoparticles as catalyst: preparation based on crystalline supramolecular hybrid of decamethylcucurbit[5]uril and silver ions. Inorg. Chem. 2014, 53, 5692–5697.
(8) Han, L. W.; Lin, J. X.; Yin, Q.; Karadeniz, B.; Li, H. F.; Lü, J.; Cao, R. Sandwich-type inorganic-organic hybrid solids of iso-polyvanadate clusters and decamethylcucurbit[5]uril. Cryst. Growth. Des. 2016, 16, 1213–1217.
(9) Lin, J.; Lü, J.; Cao, M.; Cao, R. Effects of cocrystalline subunits on the supramolecular chemistry of Me10Q[5]: from simple inorganic anions to cluster anions. Cryst. Growth. Des. 2011, 11, 778–783.
(10) Hu, Y. F.; Chen, K.; Liu, J. X.; Lin, R. L.; Sun, W. Q.; Xue, S. F.; Zhu, Q. J.; Tao, Z. Complexation of decamethylcucurbit[5]uril with alkali metal ions. Polyhedron 2012, 31, 632–637.
(11) Wei, L. T.; Zhang, Y. Q.; Zhou, K. Z.; Zhan, L. L.; Qu, Y. X.; Tao, Z.; Ma, P. H. Coordination of fully substituted cyclopentano cucurbit[5]uril with alkali cation in the presence of tetrachloridezicate anion. Inorga Chim. Acta 2016, 445, 1–7.
(12) Lin, R. L.; Sun, W. Q.; Yao, W. R.; Zhu, J.; Liu, J. X. Anion concentration control in the self-assembly of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril-based tubular architectures. RSC Advances 2014, 4, 18323–18328.
(13) Zhang, T.; Zhang, Y. Q.; Zhu, Q. J.; Tao, Z. Supramolecular assemblies based on the interaction of a copper dication with alky-substituted cucurbit[6]urils. Polyhedron 2013, 53, 98–102.
(14) Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.
(15) Ling, M.; Blackman, C. S. Gas-phase synthesis of hybrid nanostructured materials. Nanoscale 2018, 10, 22981–22989.
(16) Zhang, Y.; Hu, L.; Han, W. Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 2018, 6, 23610–23620.
(17) Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 2017, 139, 3774–3783.
(18) Wang, Q.; Wang, X. S.; Chen, C. H.; Yang, X.; Huang, Y. B.; Cao, R. Defective Pt nanoparticles encapsulated in mesoporous metal-organic frameworks for enhanced catalysis. Chem. Commun. 2018, 54, 8822–8825.
(19) Wang, D.; Xin, H. L.; Yu, Y.; Wang, H.; Rus, E.; Muller, D. A.; Hector D. A. Pt-Decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 17664–17666.
(20) Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.
(21) Li, H.; Lu, J.; Lin, J.; Huang, Y.; Cao, M.; Cao, R. Crystalline hybrid solid materials of palladium and decamethylcucurbit[5]uril as recoverable precatalysts for Heck cross-coupling reactions. Chem. Eur. J. 2013, 19, 15661–15668.
(22) Huang, X.; Zhao, Z.; Chen, Y.; Zhu, E.; Li, M.; Duan, X.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energ. Environ. Sci. 2014, 7, 2957–2962.
(23) Du, W.; Chen, G.; Nie, R.; Li, Y.; Hou, Z. Highly dispersed Pt in MIL-101: an efficient catalyst for the hydrogenation of nitroarenes. Catal. Commun. 2013, 41, 56–59.
(24) Jansen, K.; Buschmann, H. J.; Wego, A.; Dopp, D.; Mayer, C.; Drexler, H. J.; Holdt, H. J.; Schollmeyer, E. Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril. Synthesis, solubility and amine complex formation. J. Incl. Phenom. Macro. 2001, 39, 357–363.
(25) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 38.
(26) Wang, X. L.; Dong, L. Z.; Qiao, M.; Tang, Y. J.; Liu, J.; Li, Y.; Li, S. L.; Su, J. X.; Lan, Y. Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew. Chem. Int. Ed. 2018, 57, 1–6.
(27) Lin, J. X.; Lu, J.; Yang, H. X.; Cao, R. Construction of train-like supramolecular structures from decamethylcucurbit[5]uril and iso- or hetero-Keggin-type polyoxotungstates. Cryst. Growth. Des. 2010, 10, 1966–1970.
(28) Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.
|