REFERENCES
(1) Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.
(2) Yin, W. L.; Iyer, A. K.; Lin, X. S.; Li, C.; Yao, J. Y.; Mar, A. Quaternary chalcogenides BaRE2In2Ch7 (RE = La–Nd; Ch = S, Se) containing InCh5 trigonal bipyramids. Dalton Trans. 2016, 45, 12329–12337.
(3) Chi, Y.; Rong, L. Z.; Suen, N. T.; Xue, H. G.; Guo, S. P. Crystal chemistry and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm), experimental and theoretical investigations. Inorg. Chem. 2018, 57, 5343–5351.
(4) Duan, R. H.; Shen, J. N.; Lin, C. S.; Liu, P. F.; Lin, H.; Huang-Fu, S. X.; Zhao, H. J.; Khan, M. A.; Chen, L. Syntheses, structures, and properties of sulfides constructed by SbS4 teeter-totter polyhedra: Ba3La4Ga2Sb2S15 and BaLa3GaSb2S10. Inorg. Chem. Front. 2017, 4, 123–130.
(5) Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731–13738.
(6) Chi, Y.; Guo, S. P. Syntheses, crystal and electronic structure of a series of quaternary rare-earth sulfides MgRE6Si2S14 (RE = Y, Ce, Pr, Nd and Sm). J. Mol. Struct. 2017, 1127, 53–58.
(7) Feng, K.; Zhang, X.; Yin, W. L.; Shi, Y. G.; Yao, J. Y.; Wu, Y. C. New quaternary rare-earth chalcogenides BaLnSn2Q6 (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): synthesis, structure, and magnetic properties. Inorg. Chem. 2014, 53, 2248–2253.
(8) Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg. Chem. 2015, 54, 11052–11054.
(9) Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, optical and magnetic properties of novel rare-earth sulfide borates RE3S3BO3 (RE = Sm, Gd). New J. Chem. 2016, 40, 6720–6727.
(10) Zhang, M. J.; Li, B. X.; Liu, B. W.; Fan, Y. H.; Li, X. G.; Zeng, H. Y.; Guo, G. C. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds. Dalton Trans. 2013, 42, 14223–14229.
(11) Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.
(12) Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed-anions. Coord. Chem. Rev. 2018, 374, 464–496.
(13) Chen, M. M.; Xue, H. G.; Guo, S. P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 2018, 368, 115–133.
(14) Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1–xSbxHfSe3 orthorhombic perovskite. Inorg. Chem. 2017, 57, 7402–7411.
(15) Chi, Y.; Guo, S. P.; Xue, H. G. Band gap tuning from indirect EuGa2S4 to direct EuZnGeS4 semiconductor: syntheses, crystal and electronic structures, and optical properties. RSC Adv. 2017, 7, 5039–5045.
(16) Guo, S. P.; Chi, Y.; Zou, J. P.; Xue, H. G. Crystal and electronic structures, and photoluminescence and photocatalytic properties of -EuZrS3. New J. Chem. 2016, 40, 10219–10226.
(17) Guo, S. P.; Sun, Z. D. Eu1-xGa2Te4 (x ≈ 0.19) and EuY2Se4, experimental and theoretical investigations. Chin J. Struct. Chem. 2018, 37, 1243–1249.
(18) Chi, Y.; Xu, J.; Xue, H. G.; Zhang, Y. P.; Chen, X. L.; Whangbo, M. H.; Guo, S. P.; Deng, S. Q. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behaviors: synthesis and characterization of Eu9MgS2B20O41. J. Am. Chem. Soc. 2019, 141, 9533–9536.
(19) Sun, Z. D.; Chi, Y.; Guo, S. P. Cu2EuMQ4 (M = Si, Ge; Q = S, Se): syntheses, structure study and physical properties determination. J. Solid State Chem. 2019, 269, 225–232.
(20) Chi, Y.; Jiang, T. F.; Xue, H. G.; Guo, S. P. Transition metal free monoclinic Eu8In17.33S34 and its anisotropic photoelectronic responses. Inorg. Chem. 2019, 58, 3574–3577.
(21) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.
(22) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 2012, 14, 2717–2744.
(23) Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1-y)S7, and Al0.33Sm3SiS7. Inorg. Chem. 2009, 48, 7059–7065.
(24) Jakubcova, P.; Schappacher, F. M.; Pöttgen, R.; Johrendt, D. Structure and properties of mixed-valence compound Eu5Zr3S12. Z. Anorg. Allg. Chem. 2009, 635, 759–763.
(25) Gourdon, O.; Cario, L.; Petricek, V.; Perez-Mato, J. M.; Evain, M. Synthesis, structure determination, and twinning of two new composite compounds in the hexagonal perovskite-like sulfide family: Eu8/7TiS3 and Sr8/7TiS3. Z. Kristallogr. 2001, 216, 541–555.
(26) Ren, Y. Crystal structure determination of the TiSe2-based misfit layer compound (LaSe)1.20(TiSe2)2. Z. Kristallogr. 1997, 212, 586–592.
|