Alluaudite-type NaMnV2(PO4)3 single crystal was successfully synthesized in the NaCl molten-salt media. The single-crystal diffraction data analysis shows that NaMnV2(PO4)3 crystallizes in monoclinic C2/c space group with a = 12.098(2), b = 12.415(2), c = 6.4543(11) Å, β = 114.614(2)°, V = 881.3(3) Å3, Mr = 464.64, Dc = 3.50158 g/cm3, µ(MoKα) = 4.046 mm-1, F(000) = 892.4 and Z = 2. The structure consists of MnO6, VO6 octahedra and PO4 tetrahedra, which form a three-dimensional architecture with two sets of large Na+ tunnels. The intercalation/deintercalation properties of NaMnV2(PO4)3 as positive and negative electrodes were tested in sodium batteries.
Alluaudite-type NaMnV2(PO4)3 single crystal was successfully synthesized in the NaCl molten-salt media. The single-crystal diffraction data analysis shows that NaMnV2(PO4)3 crystallizes in monoclinic C2/c space group with a = 12.098(2), b = 12.415(2), c = 6.4543(11) Å, β = 114.614(2)°, V = 881.3(3) Å3, Mr = 464.64, Dc = 3.50158 g/cm3, µ(MoKα) = 4.046 mm-1, F(000) = 892.4 and Z = 2. The structure consists of MnO6, VO6 octahedra and PO4 tetrahedra, which form a three-dimensional architecture with two sets of large Na+ tunnels. The intercalation/deintercalation properties of NaMnV2(PO4)3 as positive and negative electrodes were tested in sodium batteries.
This work was supported by the Fund of Education Committee of Shaanxi Province (No. 16JS103) and the Natural Science Basic Research Plan in Shaanxi Province (No. 2018JM2021)
通讯作者:
gaojh@nwu.edu.cn
E-mail: gaojh@nwu.edu.cn
引用本文:
张佩;郭绍星;宋立美;高建华. Crystal Growth, Preparation, Structure and Electrochemical Properties of Alluaudite-type NaMnV2(PO4)3[J]. 结构化学, 2019, 38(9): 1564-1570.
ZHANG Pei;GUO Shao-Xing;SONG Li-Mei;GAO Jian-Hua. Crystal Growth, Preparation, Structure and Electrochemical Properties of Alluaudite-type NaMnV2(PO4)3. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38(9): 1564-1570.
REFERENCES
(1) Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y.; Mai, L. Q. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1–8.
(2) Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.
(3) Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.
(4) Jia, G. F.; Li, F. Q.; Peng, Z. J.; Zhu, Z. H.; Gong, Y.; Wang, Q. L. Synthesis and structural characterizations of a new lithium salt for lithium-ion batteries. Chin. J. Struct. Chem. 2015, 34, 1197–1202.
(5) Wang, X. F.; Hu, P.; Chen, L. L.; Yao, Y.; Kong, Q. Y.; Cui, G. L.; Shi, S. Q.; Chend, L. Q. An a-CrPO4-type NaV3(PO4)3 anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior. J. Mater. Chem. A 2017, 5, 3839–3847.
(6) Hu, P.; Wang, X. F.; Ma, J.; Zhang, Z. H.; He, J. J.; Wang, X. G.; Shi, S. Q.; Cui, G. L.; Chen, L. Q. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano. Energy 2016, 26, 382–391.
(7) Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444–450.
(8) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688.
(9) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.
(10) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636−11682.
(11) Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.
(12) Sharma, N.; Serras, P.; Palomares, V.; Brand, H. E. A.; Alonso, J.; Kubiak, P.; Fdez-Gubieda, M. L.; Rojo, T. Sodium distribution and reaction mechanisms of a Na3V2O2(PO4)2F electrode during use in a sodium-ion battery. Chem. Mater. 2014, 26, 3391–3402.
(13) Stevensa, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.
(14) Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen‐doped porous carbon nanosheets as low‐cost, high‐performance anode material for sodium‐ion batteries. ChemSusChem. 2013, 6, 56–60.
(15) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, G. M.; Palacín, M. R. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111.
(16) Wu, L. M.; Bresser, D.; Buchholz, D.; Passerini, S. Nanocrystalline TiO2(B) as anode material for sodium-ion batteries. J. Electrochem. Soc. 2015, 162, A3052–A3058.
(17) Su, D. W.; Ahnb, H. J.; Wang, G. X. SnO2 graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.
(18) Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.
(19) Sheldrick, G. M. SADABS, Version 2.10. Bruke Axs Inc. Madison, WI 1996.
(20) Sheldrick, G. M. Acta crystallogr. Sect. A: found. Crystallogr. 2008, 64, 112.
(21) Spek, A. L. Single-crystal structure validation with the program PLATON. Appl, J. Crystallogr. 2003, 36, 7–13.
(22) Wu, Y. F.; Chong, S. K.; Liu, Y. N.; Guo, S. W.; Bai, L. F.; Li, C. S. Review on Li-insertion/extraction mechanisms of LiFePO4 cathode materials. Chin. J. Struct. Chem. 2018, 37, 2011–2023.