REFERENCES
(1) Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750–5765.
(2) Duan, J.; Jin, W.; Kitagawa, S. Water-resistant porous coordination polymers for gas separation. Coord. Chem. Rev. 2017, 332, 48–74.
(3) Li, Z.; He, S.; Xue, L.; Wang, X.; Zhang, D.; Zhao, B. Exploring methyl-3-hydroxy-5-carboxy-2-thiophenecarboxylate and varying flexible bis(imidazole)-based synthons as building blocks for the construction of diverse cadmium coordination polymers. Dyes and Pigments 2018, 149, 498–504.
(4) Goswami, S.; Leitus, G.; Tripuramallu, B. K.; Goldberg, I. MnII and CoII coordination polymers showing field-dependent magnetism and slow magnetic relaxation behavior. Cryst. Growth Des. 2017, 17, 4393–4404.
(5) Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.
(6) Almeida Paz, F. A.; Klinowski, J.; Vilela, S. M. F.; Tomé, J. P. C.; Cavaleiro, J. A. S.; Rocha, J. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 1088–1110.
(7) Zhang, J. P.; Huang, X. C.; Chen, X. M. Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 2009, 38, 2385–2396.
(8) Zhu, X.; Wang, N.; Luo, Y.; Pang, Y.; Tian, D.; Zhang, H. Three novel polymeric CoII/CuII complexes assembled from 5-nitro-1,2,3-benzenetricarboxylate and 4,4′-bipyridine: syntheses, crystal structures, and magnetic properties. Aust. J. Chem. 2011, 64, 1346–1354.
(9) Yang, Y.; Tu, C.; Cheng, F.; Wang, F. Syntheses, structures, and magnetic properties of a series of Mn-containing coordination polymers based on 5-nitro-1,2,3-benzenetricarboxylic acid and different N-donor ligands. CrystEngComm. 2013, 15, 7121–7127.
(10) Ma, L. F.; Meng, Q. L.; Li, C. P.; Li, B.; Wang, L. Y.; Du, M.; Liang, F. P. Delicate substituent effect of benzene-1,2,3-tricarboxyl tectons on structural assembly of unusual self-penetrating coordination frameworks. Cryst. Growth Des. 2010, 10, 3036–3043.
(11) Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. 2011, 255, 485–546.
(12) Li, Z. H.; Li, Z. Y.; Chen, Y.; Lu, Y. Y.; Zhao. B. T. Auxiliary ligands mediated one- and two-dimensional Cd(II) coordination polymers incorporating methyl-3-hydroxy-5-carboxy-2-thiophenecarboxylate ligand. Chin. J. Struct. Chem. 2018, 37, 617–623.
(13) Murdock, C. R.; McNutt, N. W.; Keffer, D. J.; Jenkins, D. M. Rotating phenyl rings as a guest-dependent switch in two-dimensional metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 671–678.
(14) Li, X.; Xu, H.; Kong, F.; Wang. R. A cationic metal-organic framework consisting of nanoscale cages: capture, separation, and luminescent probing of Cr2O72− through a single-crystal to single-crystal process. Angew. Chem. Int. Ed. 2013, 52, 13769–13773.
(15) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
(16) Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.
(17) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.
(18) Nasani, R.; Saha, M.; Mobin, S. M.; Martins, L. M. D. R. S.; Pombeiro, A. J. L.; Kirillovc, A. M.; Mukhopadhyay, S. Copper-organic frameworks assembled from in situ generated 5-(4-pyridyl)tetrazole building blocks: synthesis, structural features, topological analysis and catalytic oxidation of alcohols. Dalton Trans. 2014, 43, 9944–9954.
(19) Chen, B. L.; Mok, K. F.; Ng, S. C.; Drew, M. G. B. Syntheses, structures and properties of copper(II) complexes with thiophene-2,5-dicarboxylic acid (H2Tda) and nitrogen-containing ligands. Polyhedron 1999, 18, 1211–1220.
|