Computational Studies of Toluene, Methyl Ethyl Ketone, Lubricating and Their Blends: a Combination of Density Functional Theory and Molecular Dynamics
辛益双;银凤翔
a (Beijing Key Laboratory of Energy Environmental Catalysis,Beijing University of Chemical Technology, Beijing 100029, China)
b (Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec, Beijing 102500, China)
c (National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Beijing 102500, China)
Computational Studies of Toluene, Methyl Ethyl Ketone, Lubricating and Their Blends: a Combination of Density Functional Theory and Molecular Dynamics
XIN Yi-Shuang;YIN Feng-Xiang
a (Beijing Key Laboratory of Energy Environmental Catalysis,Beijing University of Chemical Technology, Beijing 100029, China)
b (Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec, Beijing 102500, China)
c (National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Beijing 102500, China)
The microstructure and intermolecular interaction of toluene (TOL), methyl ethyl ketone (MEK), lube oil, TOL-MEK solvents, and TOL-MEK-oil solutions were studied by molecular simulation. Some simulation results agree well with the experiment, which suggests that the simulation method we adopted is a powerful tool to obtain microscopic property of the systems. The density functional theory (DFT) calculation results suggest that the interaction group of toluene and MEK is the methyl group of theirs. And the interaction between toluene and MEK is attractive. The contribution of van der Waals interaction to the change of total energy of the TOL-MEK system is major, and the second is electrostatic interaction. Molecular dynamics (MD) simulation analyzes the solubility parameter (SP), mean square displacement (MSD), radius of gyration (RG), and radial distribution function (RDF) of solvents and solutions. The results are that the solubility parameter of the blend solvents decreases with temperature, and increases with the proportion of methyl ethyl ketone in principle, and that of lube oil also trends to decrease with temperature. The MSD results give one reason of why the transmission rate of MEK is greater in membrane separation process of recovery toluene and MEK and the permeation flux increases with MEK:TOL. The RG analysis predicts that the permeability of the oil molecule is likely to rise with temperature during dewaxing solvent recovery process by membrane. The analysis of RDFs shows that the intermolecular interaction of C···C, O···O and C···O makes a major contribution to the total interaction energy.
The microstructure and intermolecular interaction of toluene (TOL), methyl ethyl ketone (MEK), lube oil, TOL-MEK solvents, and TOL-MEK-oil solutions were studied by molecular simulation. Some simulation results agree well with the experiment, which suggests that the simulation method we adopted is a powerful tool to obtain microscopic property of the systems. The density functional theory (DFT) calculation results suggest that the interaction group of toluene and MEK is the methyl group of theirs. And the interaction between toluene and MEK is attractive. The contribution of van der Waals interaction to the change of total energy of the TOL-MEK system is major, and the second is electrostatic interaction. Molecular dynamics (MD) simulation analyzes the solubility parameter (SP), mean square displacement (MSD), radius of gyration (RG), and radial distribution function (RDF) of solvents and solutions. The results are that the solubility parameter of the blend solvents decreases with temperature, and increases with the proportion of methyl ethyl ketone in principle, and that of lube oil also trends to decrease with temperature. The MSD results give one reason of why the transmission rate of MEK is greater in membrane separation process of recovery toluene and MEK and the permeation flux increases with MEK:TOL. The RG analysis predicts that the permeability of the oil molecule is likely to rise with temperature during dewaxing solvent recovery process by membrane. The analysis of RDFs shows that the intermolecular interaction of C···C, O···O and C···O makes a major contribution to the total interaction energy.
基金资助:This project was supported by Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology Beijing of China, and Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec
辛益双;银凤翔. Computational Studies of Toluene, Methyl Ethyl Ketone, Lubricating and Their Blends: a Combination of Density Functional Theory and Molecular Dynamics[J]. 结构化学, 2019, 38(8): 1251-1265.
XIN Yi-Shuang;YIN Feng-Xiang. Computational Studies of Toluene, Methyl Ethyl Ketone, Lubricating and Their Blends: a Combination of Density Functional Theory and Molecular Dynamics. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38(8): 1251-1265.
REFERENCES
(1) Montahaie, A.; Hatamipour, M. S.; Tavakkoli, T.; Aghamiri, S. F. Liquid-liquid equilibrium of (lube-oil cut + furfural) in several solvent/ feed ratios and at different temperatures. J. Chem. Eng. Data 2009, 54, 1871–1875.
(2) Razdan, U.; Joshi, S. V.; Shah, V. J. Novel membrane processes for separation of organics. Current Science 2003, 85, 761–771.
(3) Vandezande, P.; Gevers, L. E. M.; Vankelecom, I. F. J. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405.
(4) Silva, P.; Peeval, G.; Livingston, A. G. Nanofiltration in organic solvents. Advanced Membrane Technology and Applications 2008, 451–465.
(5) White, L. S. Transport properties of a polyimide solvent resistant nanofiltration membrane. J. Membr. Sci. 2002, 205, 191–202.
(6) Kim, J. F.; Szekely, G.; Schaepertoens, M.; Valtcheva, I. B.; Solomon, M. F. J.; Livingston, A. G. In situ solvent recovery by organic solvent nanofiltration. Sustainable Chem. Eng. 2014, 2, 2371–2379.
(7) Cossee, R. P.; Geus, E. R.; Heuvel, E. J. V. Process for Purifying a Liquid Hydrocarbon Product. US [P] 2002, 6488856.
(8) Kong, Y.; Shi, D. Q.; Wang, Y. H.; Yang, J.; Zhang, Y. Separation performance of polyimide nanofiltration membranes for solvent recovery from dewaxed lube oil filtrates. Desalination 2006, 191, 1, 254–261.
(9) Namvar, M. M.; Pakizeh, M.; Davari, S. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration. Purif. Technol. 2013, 119, 35–45.
(10) Namvar, M. M.; Pakizeh, M.; Davari, S. Preparation and characterization of UZM-5/polyamide thin film nanocomposite membrane for dewaxing solvent recovery. J. Membr. Sci. 2014, 459, 22–32.
(11) Patrizia, M.; Maria, F.; Jimenez, S.; Gyorgy, S.; Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 2014, 114, 10735–10806.
(12) Siavash, D.; Jan, D.; Bart, V. D. B. Performance of solvent-pretreated polyimide nanofiltration membranes for separation of dissolved dyes from toluene. Ind. Eng. Chem. Res. 2010, 49, 9330–9338.
(13) Angels, C. O.; Pieter, V.; Katrien, H.; Rolph, Z.; Khaled, M.; Werner, E.; Peter, S.; Jérémie, D. B.; Ivo, F. J. V. Probing the molecular level of polyimide-based solvent resistant nanofiltration membranes with positron annihilation spectroscopy. J. Phys. Chem. B 2009, 113, 10170–10176.
(14) Darvishmanesh, S.; Ddgrève, J.; Van, D. B. Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection B. Phys. Chem. Chem. Phys. 2010,12,13333–13342.
(15) Yang, X. J.; Livingston, A. G.; Freitas, D. S. L. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 2001, 190, 45–55.
(16) Bhanushali, D.; Kloos, S.; Kurth, C.; Bhattacharayya, D. Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling. J. Membr. Sci. 2001, 189, 1–21.
(17) Bhanushali, D.; Kloos, S.; Bhattacharayya, D. Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems: experimental results and the role of solute-solvent coupling. J. Membr. Sci. 2002,208, 343–359.
(18) Machado, D. R.; Hasson, D.; Semiat, R. Effect of solvent properties on permeate flow through nanofiltration membranes. Part I: investigation of parameters affecting solvent flux. J. Membr. Sci. 1999, 163, 93–102.
(19) Robinson, J. P.; Tarleton, E. S.; Ebert, K; Millington, C. R.; Nijmeijer, A. Influence of cross-linking and process parameters on the separation performance of poly(dimethylsiloxane) nanofiltration membranes. Ind. Eng. Chem. Res. 2005, 44, 3238–3248.
(20) White, L. S.; Albert, R. N. Solvent recovery from lube oil filtrates with a polyimide membrane. J. Membr. Sci. 2000, 179, 267–274.
(21) Sylvie, N.; David, B. Molecular dynamics simulations of oxygen transport through a fully atomistic polyimide membrane. Macromolecules 2008, 41, 2711–2721.
(22) Arroyo, S. T.; Martín, J. A. S.; García, A. H. Molecular dynamics simulation of the reaction of hydration of formaldehyde using a potential based on solute−solvent interaction energy components. J. Phys. Chem. A 2007, 111, 339–344.
(23) Matthew, R.; Scott, E. F. Structure and dynamics of a fluid phase bilayer on a solid support as observed by a molecular dynamics computer simulation. Langmuir. 2008, 24, 12469–12473.
(24) Sheetal S. J.; Susheelkumar, G. A.; Malladi, S.; Mallikarjuna, N. N.; Tejraj, M. A. Molecular modeling on the binary blend compatibility of poly(vinyl alcohol) and poly(methyl methacrylate): an atomistic simulation and thermodynamic approach. J. Phys. Chem. B 2005, 109, 15611–15620.
(25) Hossein, E.; Marzieh, B. Molecular dynamics simulation of a polyamide-66 /carbon nanotube nanocomposite. J. Phys. Chem. C 2014, 118, 9841−9851.
(26) Dieter, H.; Lydia, F.; Jens, U.; Claudia, S.; Martin, B. Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromol. Theory Simul. 2000, 9, 293–327.
(27) Ioana, C.; Mario, B.; William A. G. Gas sorption and barrier properties of polymeric membranes from molecular dynamics and monte carlo simulations. J. Phys. Chem. B 2007, 111, 3151–3166.
(28) Loukas, P.; Roland, S.; Jeremy, C. S. Simulation analysis of the temperature dependence of lignin structure and dynamics. J. Am. Chem. Soc. 2011, 133, 20277–20287.
(29) Chang, K. S.; Chi, C. H.; Lin, C. C.; Tung, K. L. Residual solvent effects on free volume and performance of fluorinated polyimide membranes: a molecular simulation study. J. Phys. Chem. B 2009, 113, 10159–10169.
(30) Headen, T. F.; Boek, E. S.; Jackson, G.; Totton, T. S.; Müller, E. A. Simulation of asphaltene aggregation through molecular dynamics: insights and limitations. Energy Fuels 2017, 31, 1108–1125.
(31) Li, T.; Yang, X. Z.; Nies, E. A replica exchange molecular dynamics simulation of a single polyethylene chain: temperature dependence of structural properties and chain conformational study at the equilibrium melting temperature. J. Chem. Theory Comput. 2011, 7, 188–202.
(32) Wang, X. Y.; Raharjo, R. D.; Lee, H. J.; Lu, Y.; Freeman, B. D.; Sanchez, I. C. Molecular simulation and experimental study of substituted polyacetylenes: fractional free volume, cavity size distributions and diffusion coefficients. J. Phys. Chem. B 2006, 110, 12666–12672.
(33) Chang, K. S.; Tung, C. C.; Wang, K. S.; Tung, K. L. Free volume analysis and gas transport mechanisms of aromatic polyimide membranes: a molecular simulation study. J. Phys. Chem. B 2009, 113, 9821–9830.
(34) Takanohashi, T.; Nakamura, K.; Iino, M. Computer simulation of methanol swelling of coal molecules. Energy & Fuels 1999, 13, 922–926.
(35) Torres, E.; Gino, A. D. A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP. J. Phys. Chem. Lett. 2012, 3, 1738−1744.
(36) Julian, T. R.; Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306.
(37) Sacristan, J.; Mijangos, C. Free volume analysis and transport mechanisms of PVC modified with fluorothiophenol compounds. A molecular simulation study. Macromolecules 2010, 43, 7357–73677.
(38) Wang, X. Y.; Willmore, F. T.; Raharjo, R. D.; Wang, X. C.; Freeman, B. D.; Hill, A. J.; Sanchez, I. C. Molecular simulations of physical aging in polymer membrane materials. J. Phys. Chem. B 2006, 110, 16685–16693.
(39) Wu, Q. Y.; Chen, X. N.; Wan, L. S.; Xu, Z. K. Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J. Phys. Chem. B 2012, 116, 8321–8330.
(40) Takanohashi, T.; Nakamura, K.; Terao, Y.; Iino, M. Computer simulation of solvent swelling of coal molecules: effect of different solvents. Energy & Fuels 2000, 14, 393–399.
(41) Jawalkar, S. S.; Raju, K. V. S. N.; Halligudi, S. B.; Sairam, M.; Aminabhavi, T. M. Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments. J. Phys. Chem. B 2007, 111, 2431–2439.
(42) Luo, Y. L.; Wang, R. G.; Wang, W.; Zhang, L. Q.; Wu, S. Z. Molecular dynamics simulation insight into two-component solubility parameters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber. J. Phys. Chem. C 2017, 121, 10163−10173.
(43) Darvishmanesh, S.; Vanneste, J.; Tocci, E.; Jansen, J. G.; Tasselli, F.; Degrève, J.; Drioli, E.; Bruggen, B. V. D. Physicochemical characterization of solute retention in solvent resistant nanofiltration: the effect of solute size, polarity, dipole moment, and solubility parameter. J. Phys. Chem. B 2011, 115, 14507–14517.
(44) Markrodimitri, Z. A.; Dohrn, R.; Economou, I. G. Atomistic simulation of poly(dimethylsiloxane): force field development, structure, and thermodynamic properties of polymer melt and solubility of n-Al. Macromolecules 2007, 40, 1720–1729.
(45) Knani, D.; Alperstein, D. Simulation of DBS, DBS-COOH, and DBS-CONHNH2 as Hydrogelators. J. Phys. Chem. A 2017, 121, 1113–1120.
(46) Silva, P.; Han, S. J.; Livingston, A. G. Solvent transport in organic solvent nanofiltration membranes. J. Membr. Sci. 2005, 262, 49–59.
(47) Painter, P.; Veytsman, B.; Youtcheff, J. Guide to asphaltene solubility. Energy Fuels 2015, 29, 2951–2961.
(48) Feng, H. J.; Gao, W.; Sun, Z. F.; Lei, B. X.; Li, G. N.; Chen, L. P. Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution. J. Phys. Chem. B 2013, 117, 12525–12534.
(49) Wang, C. Y.; Jagirdar, P; Naserifar, S.; Sahimi, M. Molecular simulation study of gas solubility and diffusion in a polymer-boron nitride nanotube composite. J. Phys. Chem. B 2016, 120, 1273–1284.
(50) Choudhury, N. Effect of salt on the dynamics of aqueous solution of hydrophobic solutes: a molecular dynamics simulation study. J. Chem. Eng. Data 2009, 54, 542–547.
(51) Willmore, F. T.; Wang, X. Y.; Sanchez, I. C. Free volume properties of model fluids and polymers: shape and connectivity. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1385–1393.
(52) Lim, S. Y.; Tsotsis, T. T. Molecular simulation of diffusion and sorption of gases in an amorphous polymer. J. Chem. Phys. 2003, 119, 496–504.
(53) Xiao, J. J.; Gu, C. G.; Fang, G. Y.; Zhu, W.; Xiao, H. M. Molecular dynamics simulation of mechanical properties and surface interaction for nitrate. PlasticizerActa Chim. Sinica 2008, 66, 874–878.
(54) Ranjbar, S.; Soltanabadi, A.; Fakhri, Z. Experimental and computational studies of binary mixtures of isobutanol + cyclohexylamine. J. Chem. Eng. Data 2016, 61, 3077–3089.