REFERENCES
(1) Becker, P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10, 979–992.
(2) Chen, C. T.; Ye, N.; Lin, J.; Jiang, J.; Zeng, W. R.; Wu, B. C. Computer-assisted search for nonlinear optical crystals. Adv. Mater. 1999, 11, 1071–1078.
(3) Luo, M.; Liang, F.; Song, Y. X.; Zhao, D.; Xu, F.; Ye, N.; Lin, Z. S. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2018, 140, 3884−3887.
(4) Luo, M.; Liang, F.; Song, Y. X.; Zhao, D.; Ye, N.; Lin, Z. S. Rational design of the first lead/tin fluorooxoborates MB2O3F2 (M = Pb, Sn), containing flexible two-dimensional [B6O12F6]∞ single layers with widely divergent second harmonic generation effects. J. Am. Chem. Soc. 2018, 140, 6814−6817.
(5) Shen, Y. G.; Zhao, S. G.; Luo, J. H. K2SbB3O8: a novel boroantimonate with isolated [B3O8]7- groups. Chin. J. Struct. Chem. 2016, 35, 1269–1276.
(6) Song, L. M.; Gao, J. H.; Yang, X. H.; Huang, X. W.; Liu, G. Q. Structure and properties of a new rare-earth borate LiSrY2(BO3)3. Chin. J. Struct. Chem. 2010, 29, 1309–1316.
(7) Jiao, Z. W.; Duan, C. C.; Cao, L. G.; Cui, Y.; Liu, F. B.; Wang, H. J. Synthesis, structure characterization and thermal analysis of a new cadmium zinc borate in the pseudo-binary system Cd3B2O6-Zn3B2O6. Chin. J. Struct. Chem. 2016, 35, 1679–1685.
(8) Pan, S. K.; Lu, S.; Ding, D. Z.; Ren, G. H.; Zhang, W. D.; Wang, G. F.; Pan, J. G. Growth and spectral properties of Yb3+-doped Ba3Gd(BO3)3 crystal. Chin. J. Struct. Chem.2007, 26, 1153–1158.
(9) Sun, C. X.; Lin, Z. B.; Zhang, L. Z.; Huang, Y. S.; Wang, G. F. Phase diagram, growth and optical property of the LaBWO6 crystal. Chin. J. Struct. Chem. 2013, 32, 1088–1092.
(10) Wang, X. S.; Liu, L. J.; Xia, M. J.; Wang, X. Y.; Chen, C. T. Two isostructural multi-metal borates: syntheses, crystal structures and characterizations of M3LiNa4Be4B10O24F (M = Sr, Cd). Chin. J. Struct. Chem. 2015, 34, 1617–1625.
(11) Chen, X. A.; Zhang, Y. H.; Chang, X. A.; Xiao, W. Q. Synthesis and characterization of a new pentaborate, KNa2CdB5O10. Chin. J. Struct. Chem. 2018, 37, 719–729.
(12) Hu, Z. G.; Higashiyama, T.; Yoshimura, M.; Yap, Y. K.; Mori, Y.; Sasaki, T. A new nonlinear optical borate crystal K2Al2B2O7 (KAB). Jpn. J. Appl. Phys. 1998, 37, L1093–L1094.
(13) You, H. P.; Hong, G. Y. Luminescence and energy transfer phenomena of several rare earth ions in the CaAl2B2O7. Mater. Res. Bull. 1997, 32, 785–790.
(14) Pekgözlü, I.; Seyyidoglu, S. Photoluminescence of Pb2+ doped CaAl2B2O7 prepared by combustion synthesis. Inorg. Mater. 2008, 44, 589–591.
(15) Tian, L.; Yu, B. Y.; Pyun, C. H.; Park, H. L.; Mho, S. New red phosphors BaZr(BO3)2 and SrAl2B2O7 doped with Eu3+ for PDP applications. Solid State Commun. 2004, 129, 43–46.
(16) Ren, Z.; Tao, C.; Yang, H.; Feng, S. A novel green emitting phosphor SrAl2B2O7:Tb3+. Mater. Lett. 2007, 61, 1654–1657.
(17) Lucas, F.; Jaulmes, S.; Quarton, M.; Le Mercier, T.; Guillen, F.; Fouassier, C. Crystal structure of SrAl2B2O7 and Eu2+ luminescence. J. Solid State Chem. 2000, 150, 404–409.
(18) Pekgözlü, I.; Tascioglu, S.; Menger, A. Luminescence of Pb2+ in MAl2B2O7 (M = Ca, Sr). Inorg. Mater. 2008, 44, 1151–1154.
(19) Hubner, K. H. Ternary system barium oxide-aluminum oxide-boron oxide. Neues Jahrb. Mineral. Abh.1970, 112, 150–160.
(20) Ye, N.;Zeng, W. R.; Wu, B. C.;Huang, X. Y.; Chen, C. T. Crystal structure of barium aluminum borate, BaAl2B2O7. Z. Krist. - New Cryst. Struct. 1998, 213, 452–452.
(21) Jagannathan, R.; Rao, R. P.; Kutty, T. R. N. Eu2+ luminescence in MAl3BO7 aluminoborates (M = Ca, Sr, Ba). Mat. Res. Bull. 1992, 27, 459–466.
(22) Chen, X.; Chu, Z.; Chang, X.; Zang, H.; Xiao, W. Synthesis, crystal structure, spectrum properties, and electronic structure of a new barium aluminoborate, Ba8[(Al6IV)(Al2IV)(Al2V)B12IIIO41]∞. J. Alloys Compd. 2012, 511, 74–80.
(23) Chen, X.; Yue, J.; Chang, X.; Xiao, W. Synthesis and characterization of a new borate Ba6Al4B14O33 with building blocks of AlO4, Al4O14, BO3, B6O14, and B6O13. J. Solid State Chem. 2017, 245, 174–183.
(24) Macdowell, J. F. Aluminoborate glass-ceramics with low thermal expansivity. J. Am. Ceram. Soc. 1990, 73, 2287–2292.
(25) Pekgozlu, I.; Seyyidoglu, S.; Tascoglu, S. A novel blue-emitting phosphor: BaAl2B2O7: Pb2+. J. Lumin. 2008, 128, 1541–1543.
(26) Sun, J.; Sun, Y.; Lai, J.; Xia, Z.; Du, H. Luminescence properties and energy transfer investigations of BaAl2B2O7:Ce3+,Tb3+ phosphors. J. Lumin. 2012, 132, 3048–3052.
(27) Palaspagar, R. S.; Gawande, A. B.; Sonekar, R. P.; Omanwar, S. K. Eu3+→Eu2+ reduction in BaAl2B2O7 phosphor in oxidizing environment. Optik 2015, 126, 5030–5032.
(28) Sheldrick, G. M. SHELX-97: Program for Structure Refinement. University of Göttingen, Germany 1997.
(29) Le Page, Y. Computer derivation of the symmetry elements implied in a structure description. J. Appl. Crystallogr. 1987, 20, 264–269.
(30) Young, R. A. Introduction to the Rietveld method - the Rietveld method, edited byYoung, R. A. UCr Book Series, Oxford University Press 1993, P1–39.
(31) Wendlandt, W. W. M.; Hecht, H. G. Reflectance Spectroscopy; Interscience: a Division of John Wiley & Sons: New York 1966.
(32) Segall, M.; Linda, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. Accelrys Inc., San Diego 2006, Materials Studio, version 4.1.
(33) Ceperley, D. M.; Alder, B. J. Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.
(34) Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.
(35) Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.
(36) Gao, J.; Li, R. K. Preparation and structure of NaSr0.5Al2B2O7 and NaCa0.5Al2B2O7. J. Solid State Chem. 2005, 178, 1513–1517.
(37) Shannon, R. D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767.
(38) Tanaka, Y.; Fukunaga, J.; Setoguchi, M.; Higashi, T.; Ihara, M. The crystal structure of tripotassium aluminate octaborate K3AlB8O15. J. Ceram. Soc. Jap. 1982, 90, 458–463.
(39) Chen, X. A.; Zhao, Y. H.; Chang, X. A.; Zhang, L.; Xue, H. P. Lead zinc borate, PbZn2(BO3)2. Acta Crystallogr. C 2006, 62, i11–i12.
(40) Cousson, A.; Gasperin, M. Synthese et structure du borate de thorium: ThB2O5. Acta Crystallogr. C 1991, 47, 10–12.
(41) Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database. Acta Crystallogr. B 1985, 41, 244–247.
(42) Mączka, M.; Szymborska-Małeka, K.; Gągora, A.; Majchrowskib, A. Growth and characterization of acentric BaHf(BO3)2 and BaZr(BO3)2. J. Solid State Chem. 2015, 225, 330–334.
(43) Atuchin, V. V.; Subanakov, A. K.; Aleksandrovsky, A. S.; Bazarov, B. G.; Bazarova, J. G.; Gavrilova, T. A.; Krylov, A. S.; Molokeev, M. S.; Oreshonkov, A. S.; Stefanovich, S.Y. Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Design 2018, 140, 488–494.
(44) Frost, R. L. Raman spectroscopy of selected borate minerals of the pinakiolit´ group. J. Raman. Spectrosc. 2011, 42, 540–543.
|