REFERENCES
(1) Percebois, J. The peaceful uses of nuclear energy: technologies of the front and back-ends of the fuel cycle. Energy Policy 2003, 31, 101108.
(2) Ellis, W. P.; Lindstrom, R. M. Refractive indices of fluoride interference films on thorium dioxide. Opt. Acta 1964, 11, 287294.
(3) Idiri, M.; Bihan, T. L.; Heathman, S.; Rebizant, J. Behavior of actinide dioxides under pressure: UO2 and ThO2. Phys. Rev. B 2004, 70, 0141138.
(4) Barnea, E.; Eisen, M. S. Organoactinides in catalysis. Coordin. Chem. Rev. 2006, 250, 855899.
(5) Wang, F. Z.; ZhuGe, F.; Zhang, H.; Ding, B. J. Effect of high content nano-thoria addition on the properties of tungsten electrode. Mater. Res. Bull. 2003, 38, 629636.
(6) Salzano, F. J.; Isaacs, H. S.; Minushkin, B. Potential measurements on a Si, SiO2 electrode using a ThO2-Y2O3 electrolyte. J. Electrochem. Soc. 1971, 118, 412416.
(7) Gong, Y.; Andrews, L.; Jackson, V. E.; Dixon, D. A. Methane to methanol conversion induced by thorium oxide through the CH3Th(O)H intermediate in solid argon. Inorg. Chem. 2012, 51, 1105511060.
(8) Rothe, J.; Denecke, M. A.; Neck, V.; Mu1ller, R.; Kim, J. I. XAFS investigation of the structure of aqueous thorium(IV) species, colloids, and solid thorium(IV) oxide/hydroxide. Inorg. Chem. 2002, 41, 249258.
(9) Falaise, C.; Volkringer, C.; Loiseau, T. Isolation of thorium benzoate polytypes with discrete ThO8 square antiprismatic units involved in chain-like assemblies. Inorg. Chem. Commun. 2014, 39, 2630.
(10) Wang, F.; Le, A.; Steimle, T. C.; Heaven, M. C. Communication: the permanent electric dipole moment of thorium monoxide, ThO. J. Chem. Phys. 2011, 134, 0311023.
(11) Infante, I.; Kovacs, A.; Macchia, G. L.; Shahi, A. R. M.; Gibson, J. K.; Gagliardi, L. Ionization energies for the actinide mono- and dioxides series, from Th to Cm: theory versus experiment. J. Phys. Chem. A 2010, 114, 60076015.
(12) Watanabe, Y.; Matsuoka, O. All-electron Dirac-Fock-Roothaan calculations for the ThO molecule. J. Chem. Phys. 1997, 107, 37383739.
(13) Buchachenko, A. A. Communication: electric properties of the ThO(X1Σ+) molecule. J. Chem. Phys. 2010, 133, 0411023.
(14) Paulovic, J.; Nakajima, T.; Hirao, K. Relativistic and correlated calculations on the ground and excited states of ThO. J. Chem. Phys. 2003,119, 798805.
(15) Lu, Y.; Yang, Y.; Zhang, P. Thermodynamic properties and structural stability of thorium dioxide. J. Phys.: Condens. Matter. 2012, 24, 22580110.
(16) Wadt, W. R. Why UO22+ is linear and isoelectronic ThO2 is bent. J. Am. Chem. Soc. 1981, 103, 60536057.
(17) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chern. Phys. 1994, 100, 75357542.
(18) Olsen, J. S.; Gerward, L.; Kanchana, V.; Vaitheeswaran, G. The bulk modulus of ThO2 - an experimental and theoretical study. J. Alloy. Compd. 2004, 381, 3740.
(19) Sevik, C.; Çağın, T. Mechanical and electronic properties of CeO2, ThO2, and (Ce,Th)O2 alloys. Phys. Rev. B 2009, 80, 0141087.
(20) Wang, B. T.; Shi, H.; Li, W. D.; Zhang, P. First-principles study of ground-state properties and high pressure behavior of ThO2. J. Nucl. Mater. 2010, 399, 181188.
(21) Kanchana, V.; Vaitheeswaran, G.; Svane, A.; Delin, A. First-principles study of elastic properties of CeO2, ThO2 and PoO2. J. Phys.: Condens. Matter. 2006, 18, 96159624.
(22) Kovács, A. R.; Konings, R. J. M. Computed vibrational frequencies of actinide oxides AnO0/+/2+ and AnO20/+/2+ (An = Th, Pa, U, Np, Pu, Am, Cm). J. Phys. Chem. A 2011, 115, 66466656.
(23) Goncharov, V.; Heaven, M. C. Spectroscopy of the ground and low-lying excited states of ThO+. J. Chem. Phys. 2006, 124, 0643127.
(24) Andrews, L.; Gong, Y.; Liang, B.; Jackson, V. E.; Flamerich, R.; Li, S. G.; Dixon, D. A. Matrix infrared spectra and theoretical studies of thorium oxide species: ThOx and Th2Oy. J. Phys. Chem. A 2011, 115, 1440714416.
(25) Shamov, G. A. Relativistic density functional study on uranium(IV) and thorium(IV) oxide clusters of zonohedral geometry. Inorg. Chem. 2012, 51, 65076516.
(26) Knope, K. E.; Wilson, R. E.; Vasiliu, M.; Dixon, D. A.; Soderholm, L. Thorium(IV) molecular clusters with a hexanuclear Th core. Inorg. Chem. 2011, 50, 96969704.
(27) Knope, K. E.; Vasiliu, M.; Dixon, D. A.; Soderholm, L. Thorium(IV)-Selenate clusters containing an octanuclear Th(IV) hydroxide/oxide core. Inorg. Chem. 2012, 51, 42394249.
(28) Vasiliu, M.; Knope, K. E.; Soderholm, L.; Dixon, D. A. Spectroscopic and energetic properties of thorium(IV) molecular clusters with a hexanuclear core. J. Phys. Chem. A 2012, 116, 69176926.
(29) Wang, B.; Xia, C. J.; Fang, H. L.; Chen, W. J.; Zhang, Y. F.; Huang, X. Mononuclear thorium halide clusters ThX4 (X = F, Cl): gas-phase hydrolysis reactions. Phys. Chem. Chem. Phys. 2018, 20, 2118421193.
(30) Xia, C. J.; Wang, B. DFT studies on the electronic and structural properties of titanium-doped thorium oxides clusters: ThTiO4/0, Th2TiO6/0 and ThTi2O6/0. J. At. Mol. Phys. 2018, 35, 544554 (in Chinese).
(31) Becke, A. D. A New mixing of hartree-fock and local density-functional theories. J. Chem. Phys. 1993, 98, 13721377.
(32) Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785789.
(33) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 1162311627.
(34) Zhao, Y. F.; Chen, X.; Li, J. TGMin: a global-minimum structure search program based on a constrained basin-hopping algorithm. Nano. Res. 2017, 10, 34073420.
(35) Zhao, Y. F.; Li, J. The computer software of Tsinghua Global Minima (TGMin) program, version 1.0. Intellectual Property Bureau of China, register no. 2013sr007920, Nov. 15, 2012.
(36) Wales, D. J.; Scheraga, H. A. Global opitimization of clusters, crystals, and biomolecules. Science 1999, 285, 13681372.
(37) Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 31136.
(38) Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69142.
(39) Chen, X.; Zhao, Y. F.; Wang, L. S.; Li, J. Recent progresses of global minimum searches of nanoclusters with a constrained basin-hopping algorithm in the TGMin program. Comput. Theor. Chem. 2017, 1107, 5765.
(40) Dunning, Jr. T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 10071024.
(41) Kendall, R. A.; Dunning, Jr. T. H. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 67966807.
(42) Bozkaya, U. The extended Koopmans' theorem for orbital-optimized methods: accurate computation of ionization potentials. J. Chem. Phys. 2013, 139, 15410512.
(43) Cao, X.; Dolg, M.; Stoll, H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 2003, 118, 487496.
(44) Purvis, G. D.; Bartlett, R. J. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 19101918.
(45) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 1988, 89, 73827387.
(46) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Headgordon, M. A 5th-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479483.
(47) Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-cluster methods with noniterative triple excitations for restricted open-shell hartree-fock and other general single determinant reference functions-energies and analytical gradients. J. Chem. Phys. 1993, 98, 87188733.
(48) Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291352.
(49) Tozer, D. J.; Handy, N. C. Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J. Chem. Phys. 1998, 109, 1018010189.
(50) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2010, Gaussian 09, Revision C.01.
(51) Werner, H. J.; Knowles, P. J.; Manby, F. R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; HamPel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; KöPPl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; O’Neill, D. P.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; Wolf, A. MOLPRO, Version 2010.1.
(52) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14, 3338.
(53) Jackson, V. E.; Craciun, R.; Dixon, D. A.; Peterson, K. A.; Jong, W. A. D. Prediction of vibrational frequencies of UO22+ at the CCSD(T) Level. J. Phys. Chem. A 2008, 112, 40954099.
(54) Gong, Y.; Andrews, L. Matrix infrared spectroscopic and density functional theoretical investigations on thorium and uranium atom reactions with dimethyl ether. Dalton Trans. 2011, 40, 1110611114.
(55) Wu, Z.; Farges, F. Anharmonicity around Th in crystalline oxide-type compounds: an in situ-, high-temperature XAFS spectroscopy study to 1500℃. Physica B 1999, 266, 282289.
(56) Li, S. G.; Dixon, D. A. Molecular structures and energetics of the (ZrO2)n and (HfO2)n (n = 1~4) clusters and their anions. J. Phys. Chem. A 2010, 114, 26652683.
(57) Kim, J. B.; Weichman, M. L.; Neumark, D. M. Structural isomers of Ti2O4 and Zr2O4 anions identified by slow photoelectron velocity-map imaging spectroscopy. J. Am. Chem. Soc. 2014, 136, 71597168.
(58) Li, S. G.; Dixon, D. A. Molecular structures and energetics of the (TiO2)n (n = 1~4) clusters and their anions. J. Phys. Chem. A 2008, 112, 66466666.
|