REFERENCES
(1) Pan, G. X.; Li, L. Q.; Wu, L. S.; Zhang, X. H. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biol. 2003, 10, 7992.
(2) Conrad, R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999, 28, 193202.
(3) Lovley, D. R.; Coates, J. D.; Blunt-Harris, E. L.; Phillips, E. J. P.; Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445448.
(4) Heitmann, T.; Blodau, C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 2006, 235, 1220.
(5) Keller, J. K.; Weisenhorn, P. B.; Megonigal, J. P. Humic acids as electron acceptors in wetland decomposition. Soil Biol. Biochem. 2009, 41, 15181522.
(6) Coates, J. D.; Cole, K. A.; Chakraborty, R.; O’Connor, S. M.; Achenbach, L. A. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl. Environ. Microbiol. 2002, 68, 24452452.
(7) Minderlein, S.; Blodau, C. Humic-rich peat extracts inhibit sulfate reduction, methanogenesis, and anaerobic respiration but not acetogenesis in peat soils of a temperate bog. Soil Biol. Biochem. 2010, 42, 20782086.
(8) Bauer, I.; Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 2009, 43, 49024908.
(9) Maurer, F.; Christl, I.; Fulda, B.; Voegelin, A.; Kretzschmar, R. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 2. Potentiometric titrations and dialysis cell experiments. Environ. Sci. Technol. 2013, 47, 1091210921.
(10) Fulda, B.; Voegelin, A.; Maurer, F.; Christl, I.; Kretzschmar, R. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study. Environ. Sci. Technol. 2013, 47, 1090310911.
(11) Zhou, S. G.; Chen, S. S.; Yuan, Y.; Lu, Q. Influence of humic acid complexation with metal ions on extracellular electron transfer activity. Scientific Reports 2015, 5, 17067.
(12) Yan, M. Q.; Korshin, G. V. Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter. Environ. Sci. Technol. 2014, 48, 31773185.
(13) Yang, L.; Wei, Z. G.; Zhong, W. H.; Cui, J.; Wei, W. Modifying hydroxyapatite nanoparticles with humic acid for highly effcient removal of Cu(II) from aqueous solution. Colloids and Surfaces A 2016, 490, 921.
(14) Kappler, A.; Benz, M.; Schink, B.; Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 2004, 47, 8592.
(15) Niederer, C.; Gossl, K. U. Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapors. Environ. Sci. Technol. 2007, 41, 36463652.
(16) Nuerla, A. L. J.; Qiao, X. L.; Li, J.; Zhao, D. M.; Yang, X. H.; Xie, Q.; Chen, J. W. Effects of substituent position on the interactions between PBDEs/PCBs and DOM. Chin. Sci. Bull. 2012, 57, 32653271.
(17) Liu, J.; Chakraborty, S.; Hosseinzadeh, P.; Yu, Y.; Tian, S.; Petrik, I.; Bhagi, A.; Lu, Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 2014, 114, 43664469.
(18) Cornil, J.; Lemaur, V.; Calbert, J. P.; Brédas, J. L. Charge transport in discotic liquid crystals: a molecular scale description. Adv. Mater. 2002, 14, 726729.
(19) Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Luminescent and redox-active polynuclear transition metal complexes. Chem. Rev. 1996, 96, 759833.
(20) Jin, R. F.; Wang, F. X.; Guan, R. J.; Zheng, X. M.; Zhang, T. Design of perylene-diimides-based small-molecules semiconductors for organic solar cells. Mol. Phys. 2017, 115, 15911597.
(21) Ma, C. H.; Liang, W.; Jiang, D. Y.; Hong, Z.; Qing, L.; Yan, Y. S. Theoretical study of the photophysical and charge transport properties of novel fluorescent fluorine-boron compounds. Mol. Phys. 2010, 108, 667674.
(22) Chen, X. K.; Zou L. Y.; Fan, J. X.; Zhang, S. F.; Ren, A. M. Effect of dihydropyrazine on structures and charge transport properties of N-heteropentacenes matters: a theoretical investigation. Org. Electron. 2012, 13, 28322842.
(23) Jones, L.; Lin, L. A theoretical study on the isomers of the B5TB heteroacene for improved semiconductor properties in organic electronics. Comput. Theor. Chem. 2017, 1115, 22–29.
(24) Coropceanu, V.; Cornil, J.; Filho, D. A. S.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926952.
(25) Yin, J.; Chen, R. F.; Zhang, S. L. Theoretical study of charge-transfer properties of the π-stacked poly(1,1-silafluorene)s. J. Phys. Chem. C 2011, 115, 1477814785.
(26) Shin, M. W.; Lee, H. C.; Kim, K. S.; Lee, S. H.; Kim, J. C. Thermal analysis of tris(8-hydroxyquinoline) aluminum. Thin Solid Films 2000, 363, 244247.
(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr. , J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., Wallingford CT 2009, Gaussian 09, Revision A. 02.
(28) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 56485652.
(29) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200206.
(30) Lee, C.; Yang, W. T.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785789.
(31) Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553566.
(32) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110.
|