Single and Double Chainlike Manganese Coordination Polymers of Linear Ligands:Synthesis, Structure and Magnetism
张漫波;张娜;胡瑞祥
(Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering,
Hunan Normal University, Changsha 410081, China)
Single and Double Chainlike Manganese Coordination Polymers of Linear Ligands:Synthesis, Structure and Magnetism
ZHANG Man-Bo;ZHANG Na;HU Rui-Xiang
(Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering,
Hunan Normal University, Changsha 410081, China)
Two single and double chain manganese coordination polymers {[Mn(L1)(H2O)2]NO3}n (1) and [Mn(L2)2(H2O)]n (2) (HL1 = 2,2΄:6΄,2΄΄-terpyridine-4΄-carboxylic acid, HL2 = 4΄-(4-carboxyphenyl)-2,2΄:6΄,2΄΄-terpyridine) have been synthesized hydrothermally, and characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic space group P2/c, while 2 crystallizes in triclinic, space group P . Crystal data for 1: C16H14MnN4O7, Mr = 429.25, a = 10.684(2), b = 9.338(1), c = 9.896(2) Å, β = 113.89(3)o, V = 902.7(3) Å3, Z = 2, T = 153(2) K, Dc = 1.579 g/cm3, µ = 0.780 mm−1, F(000) = 438, R = 0.1084, wR = 0.3507, and GOF = 1.069; For 2: C44H30MnN6O5, Mr = 777.68, a = 11.255(2), b = 11.554(2), c = 15.417(3) Å, α = 107.28(3), β = 101.07(3), γ = 107.23(3)o, V = 1740.2(6) Å3, Z = 2, T = 293(2) K, Dc = 1.484 g/cm3, µ = 0.440 mm−1, F(000) = 802, R = 0.0471, wR = 0.1050, and GOF = 0.948. In both compounds, the central Mn(II) ions adopt the same distorted pentagonal-bipyramid geometry [MnN3O4] with different secondary structure units. L1 ligand adopts the μ2-1κ3N,N΄,N΄΄:2κ2O,O΄ mode to coordinate with mononuclear manganese to build a single chainlike compound 1, while L2 employs μ3-1κ3N,N΄,N΄΄:2κ2O,O΄:3κ1O and 1κ1O modes to link dimeric Mn2O2 to exhibit a double chainlike 2. Both compounds display weak antiferromagnetic coupling interactions.
Two single and double chain manganese coordination polymers {[Mn(L1)(H2O)2]NO3}n (1) and [Mn(L2)2(H2O)]n (2) (HL1 = 2,2΄:6΄,2΄΄-terpyridine-4΄-carboxylic acid, HL2 = 4΄-(4-carboxyphenyl)-2,2΄:6΄,2΄΄-terpyridine) have been synthesized hydrothermally, and characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic space group P2/c, while 2 crystallizes in triclinic, space group P . Crystal data for 1: C16H14MnN4O7, Mr = 429.25, a = 10.684(2), b = 9.338(1), c = 9.896(2) Å, β = 113.89(3)o, V = 902.7(3) Å3, Z = 2, T = 153(2) K, Dc = 1.579 g/cm3, µ = 0.780 mm−1, F(000) = 438, R = 0.1084, wR = 0.3507, and GOF = 1.069; For 2: C44H30MnN6O5, Mr = 777.68, a = 11.255(2), b = 11.554(2), c = 15.417(3) Å, α = 107.28(3), β = 101.07(3), γ = 107.23(3)o, V = 1740.2(6) Å3, Z = 2, T = 293(2) K, Dc = 1.484 g/cm3, µ = 0.440 mm−1, F(000) = 802, R = 0.0471, wR = 0.1050, and GOF = 0.948. In both compounds, the central Mn(II) ions adopt the same distorted pentagonal-bipyramid geometry [MnN3O4] with different secondary structure units. L1 ligand adopts the μ2-1κ3N,N΄,N΄΄:2κ2O,O΄ mode to coordinate with mononuclear manganese to build a single chainlike compound 1, while L2 employs μ3-1κ3N,N΄,N΄΄:2κ2O,O΄:3κ1O and 1κ1O modes to link dimeric Mn2O2 to exhibit a double chainlike 2. Both compounds display weak antiferromagnetic coupling interactions.
This project was supported by the Scientific Research Fund of Hunan Provincial Education Department (15C0818, 17C0948) and the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University (KLCBTCMR201808)
通讯作者:
hurx@hunnu.edu.cn
E-mail: hurx@hunnu.edu.cn
引用本文:
张漫波;张娜;胡瑞祥. Single and Double Chainlike Manganese Coordination Polymers of Linear Ligands:Synthesis, Structure and Magnetism[J]. 结构化学, 2019, 38(2): 301-307.
ZHANG Man-Bo;ZHANG Na;HU Rui-Xiang. Single and Double Chainlike Manganese Coordination Polymers of Linear Ligands:Synthesis, Structure and Magnetism. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38(2): 301-307.
REFERENCES
(1) Weng, D. F.; Wang, Z. M.; Gao, S. Framework-structured weak ferromagnets. Chem. Soc. Rev. 2011, 40, 3157–3181.
(2) Gaspar, A. B.; Ksenofontov, V.; Seredyuk, M. Multifunctionality in spin crossover materials. Coord. Chem. Rev. 2005, 249, 2661–2676.
(3) Wang, Y. L.; Han, C. B.; Zhang, Y. Q. Fine-tuning ligand to modulate the magnetic anisotropy in a carboxylate-bridged Dy2 single-molecule magnets system. Inorg. Chem. 2016, 55, 5578–5584.
(4) Sessoli, R; Gatteschi, D; Caneschi, A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143.
(5) Qian, K; Huang, X. C.; Zhou, C; You, X. Z.; Wang, X. Y.; Dunbar, K. R. A single-molecule magnet based on heptacyanomolybdate with the highest energy barrier for a cyanide compound. J. Am. Chem. Soc. 2013, 135, 13302−13305.
(6) Tasiopoulos, A. J.; Wernsdorfer, W.; Moulton, B.; Zaworotko, M. J.; Christou, G. Template synthesis and single-molecule magnetism properties of a complex with spin S = 16 and a [Mn8O8]8+ saddle-like core. J. Am. Chem. Soc. 2003, 125, 15274−15275.
(7) Adebayo, O. A.; Abboud, K. A.; Christou, G. Mn-3 single-molecule magnets and Mn-6/Mn-9 clusters from the use of methyl 2-pyridyl ketone oxime in manganese phosphinate and phosphonate chemistry. Inorg. Chem. 2017, 56, 11352−11364.
(8) Wang, C. C.; Wang, P. Hydrothermal synthesis and crystal structure of bis(pyrazinium-2,3-dicarboxylato)manganate dehydrate. Asian J. Chem. 2009, 21, 7411−7415.
(9) MacDonald, J. C.; Dorrestein, P. C.; Pilley, M. M. Design of layered crystalline materials using coordination chemistry and hydrogen bonds. J. Am. Chem. Soc. 2000, 122, 11692−11702.
(10) Zhang, M. B.; Zhang, M. Z.; Chen, X.; Hu, R. X. Syntheses and characterizations of the lanthanide compounds with 4-(4-pyridyl)benzoate and 2, 6-pyridinedicarboxylate as ligands. Chin. J. Struct. Chem. 2017, 36, 825−830.
(11) Tong, M. L.; Wang, J.; Hu, S. Synthesis, structures and magnetic properties of two 3D 3,4-pyridinedicarboxylate bridged manganese(II) coordination polymers incorporating 1D helical Mn(carboxylate)2 chain or Mn3(OH)2 chain. J. Solid State Chem. 2005, 178, 1518–1525.
(12) Fӧrster, C.; Heinze, K. A heteroleptic bis(tridentate)ruthenium(II) polypyridine complex with improved photophysical properties and integrated functionalizability Aaron breivogel. Inorg. Chem. 2010, 49, 7052–7056.
(13) Brown, D. G.; Schauer, P. A.; Borau-Garcia, J.; Fancy, B. R.; Berlinguette, C. P. Stabilization of ruthenium sensitizers to TiO2 surfaces through cooperative anchoring groups. J. Am. Chem. Soc. 2013, 135, 1692−1695.
(14) Manner, V. W.; DiPasquale, A. G.; Mayer, J. M. Facile concerted proton-electron transfers in a ruthenium terpyridine-4΄-carboxylate complex with a long distance between the redox and basic sites. J. Am. Chem. Soc. 2008, 130, 7210–7211.
(15) Zhang, N.; Yang, J.; Hu, R. X.; Zhang, M. B. Syntheses and structures of terpyridine-metal complexes. Z. Anorg. Allg. Chem. 2013, 639, 197–202.
(16) Cooke, M. W.; Hanan, G. S.; Loiseau, F.; Campagna, S.; Watanabe, M.; Tanaka, Y. The structural and functional roles of rhodium(II)-rhodium(II) dimers in multinuclear ruthenium(II) complexes. Angew. Chem. Int. Ed. 2005, 44, 4881–4884.
(17) Cooke, M. W.; Santoni, M. P.; Hanan, G. S.; Loiseau, F.; Proust, A.; Hasenknopf, B. Spanning pairs of Rh2(acetate)4 units with Ru(II) complexes. Inorg. Chem. 2008, 47, 6112−6114.
(18) Yang, J.; Hu, R. X.; Zhang, M. B. Construction of monomers and chains assembled by 3d/4f metals and 4΄-(4-carboxyphenyl)-2, 2΄:6΄, 2΄΄-
terpyridine. J. Solid State Chem. 2012, 196, 398–403.
(19) Chou, C. C.; Wu, K. L.; Yun, C.; Hu, W. P.; Yu, S. J.; Lee, G. H.; Lin, C. L.; Chou, P. T. Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2011, 50, 2054–2058.
(20) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613–1624.
(21) Chang, W. C.; Chen, H. S.; Li, T. Y. Highly efficient N-heterocyclic carbene/pyridine-based ruthenium sensitizers: complexes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2010, 49, 8161–8164.
(22) Kent, C. A.; Mehl, B. P.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. Energy transfer dynamics in metal-organic frameworks. J. Am. Chem. Soc. 2010, 132, 12767–12769.
(23) Polander, L. E.; Yella, A.; Curchod, B. F. E.; Astani, N. A.; Teuscher, J.; Scopelliti, R.; Gao, P.; Mathew, S.; Moser, J. E.; Tavernelli, I.; Rothlisberger, U.; Gratzel, M.; Nazeeruddin, M. K.; Frey, J. Towards compatibility between ruthenium sensitizers and cobalt electrolytes in dye-sensitized solar cells. Angew. Chem. Int. Ed. 2013, 52, 8731–8735.
(24) Constable, E. C.; Dunphy, E. L.; Housecroft, C. E. Expanded ligands: bis(2,2΄:6΄,2΄΄-terpyridine carboxylic acid)ruthenium(II) complexes as metallosupramolecular analogues of dicarboxylic acids. Dalton Trans. 2007, 4323–4332.
(25) Husson, J.; Beley, M.; Kirsch, G. A novel pathway for the synthesis of a carboxylic acid-functionalised Ru(II) terpyridine complex. Tetra. Lett. 2003, 44, 1767–1770.
(26) Shklover, V.; Nazeeruddin, M. K.; Gratzel, M.; Ovchinnikov, Y. E. Packing of ruthenium sensitizer molecules on mostly exposed faces of nanocrystalline TiO2: crystal structure of (NBu4+)2[Ru(H2tctterpy)(NCS)3]2−•0.5DMSO. Appl. Organomet. Chem. 2002, 16, 635–642.
(27) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Gőttingen, Germany 1997.
(28) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Gőttingen, Germany 1997.
(29) Su, F.; Zhou, C. Y.; Han, C. Binuclear Mn2+ complexes of a biphenyltetracarboxylic acid with variable N-donor ligands: syntheses, structures, and magnetic properties. CrystEngcomm. 2018, 20, 1818–1831.
(30) Vallejo, J. ; Salcedo, I. R.; Colodrero, R. M. P. ; Cabeza, A.; Switlicka, A. ; Cano, J. ; Viciano-Chumillas, M. Zinc(II), cobalt(II) and manganese(II) networks with phosphoserine ligand: synthesis, crystal structures andmagnetic and proton conductivity properties. Dalton Trans. 2017, 46, 16570–16579
(31) Wang, Y. Q.; Yue, Q.; Qi, Y.; Wang, K.; Sun, Q.; Gao, E. Q. Manganese(II), iron(II), and mixed-metal metal-organic frameworks based on chains with mixed carboxylate and azide bridges: magnetic coupling and slow relaxation. Inorg. Chem. 2013, 52, 4259–4268.