Peptides are one of the indispensable substances in life. The use of computer aided drug design (CADD) methods to design peptides and peptiodmimetics can short the design cycle, save research funding, improve the level of whole research to a large extent and guide the discovery of new drugs. In this paper, Melittin and amoebapore three-dimensional quantitative structure-activity relationship (3D-QSAR) models were established by using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) method. The result shows that, the correlation coefficient (q2) was 0.583 and non-cross-validation correlation coefficient (r2) was 0.972 for the melittin CoMFA model. The q2 and r2 were 0.630 and 0.995 for the best CoMSIA model, 0.645 and 0.993 for the amoebapore CoMFA model, and 0.738 and 0.996 for the best CoMSIA model. The statistical parameters demonstrated that the CoMFA and CoMSIA models had both good predictive ability and high statistical stability, and can provide theoretical basis for designing new high activity polypeptide drugs.
Supported by the National Natural Science Foundation of China (21475081), Natural Science Foundation of Shaanxi Province of China (2015JM2057), and Graduate Innovation Fund of Shaanxi University of Science and Technology
仝建波;秦尚尚;江国燕. 基于CoMFA和CoMSIA方法对蜂毒肽和变形虫穿孔肽的3D-QSAR研究[J]. 结构化学, 2019, 38(2): 201-210.
TONG Jian-Bo;QIN Shang-Shang;JIANG Guo-Yan . 3D-QSAR Study of Melittin and Amoebapore Analogues by CoMFA and CoMSIA Methods. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38(2): 201-210.
REFERENCES
(1) Yao, W. L.; Li, B.; He, J. G. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors. J. Mol. Struct. 2011, 998, 53–61.
(2) Wu, S. F.; Qi, W.; Su, R. X.; Li, T. H.; Lu, D.; He, Z. M. CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. Eur. J. Med. Chem. 2014, 84, 100–106.
(3) Wang, C. K.; Colgrave, M. L.; Gustafson, K. R.; Ireland, D. C.; Goransson, U. Anti-HIV cyclotides from the Chinese medicinal her viola yedoensis. J. Nat. Prod. 2008, 71, 47–52.
(4) Elisabete, G.; Eric, K.; Joachim, S. Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin. Biochemistry 2006, 45, 3086–3094.
(5) Liao, C. Y.; Myvizhi, E. S.; Zhao, J. Melittin aggregation in aqueous solutions: Insight from molecular dynamics simulations. J. Phy. Chem. B. 2015, 119, 10390–10398.
(6) Dang, Y. Q.; Li, H. W.; Wu, Y. Q. Construction of a supramolecular förster resonance energy transfer system and its application based on the interaction between cy3-labeled melittin and phosphocholine encapsulated quantum dots. Acs. App. Mater. Inter. 2012, 4, 1267–1272.
(7) Tosteson, M. T.; Holmes, S. J.; Razin, M.; Tosteson, D. C. Melittin lysis of red cells. J. Membrane. Biol. 1985, 87, 35–44.
(8) Sourav, H.; Raghuraman, H.; Amitabha, C. Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J. Phy. Chem. B. 2008, 112, 14075–14082.
(9) Thomas, G.; Beate, R.; Heike, B. Interaction of amoebapores and NK-lysin with symmetric phospholipid and asymmetric lipopolysaccharide/phospholipid bilayers. Biochemistry 2003, 42, 9804–9812.
(10) AndraÈ, J.; Berninghausen, O.; Wülfken, J.; Leippe, M. Shortened amoebapore analogs with enhanced antibacterial and cytolytic activity. Febs. Lett. 1996, 385, 96–100.
(11) Chang, J.; Liu, S.; Li, L.; Tong, J. Peptide drugs QSAR modeling based on a new descriptor of amino acids-SVGT. Lett. Drug. Des. Discov. 2016, 13, 262–267.
(12) Phosrithong, N.; Ungwitayatorn, J. Ligand-based CoMFA and CoMSIA studies on chromone derivatives as radical scavengers. Bioorg. Chemy. 2013, 49, 9–15.
(13) Tong, J. B.; Wu, Y. J.; Bai, M. 3D-QSAR and molecular docking studies on HIV protease inhibitors. J. Mol. Struct. 2017, 1129, 17–22.
(14) Cammarata, A.; Allen, R. C. Organization and dynamics of melittin in environments of graded hydration: a fluorescence approach. Langmuir. 2003, 19, 10332–10341.
(15) Xiong, Q.; Wang, Y. Q.; Li, Z. L. Structure characterization and antibacterial activity prediction for amoebapore and their analogs. Comput. Appl. Chem. 2006, 23, 1007–1012.
(16) Leippe, M.; AndraÈ, J.; MuÈller-Eberhard, H. J. Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of Entamoeba histolytica. Proc. Natl. Acad. Sci. USA 1994, 91, 2602–2606.
(17) Mccourt, J A.; Pang, S S.; Guddat, L. W.; Duggleby, R. G. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry-US. 2005, 44, 2330–2338.
(18) Xie, H.; Chen, L.; Zhang, J.; Xie, X., Qiu, K.; Fu, J. A combined pharmacophore modeling, 3D-QSAR and virtual screening studies on imidazopyridines as B-raf inhibitors. INT. J. MOL. SCI. 2015, 16, 12307–12323.
(19) Irini, A.; Darren, R. Toward the quantitative prediction of T-cell epitopes: CoMFA and CoMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J. Med. Chem. 2011, 44, 3572–3581.
(20) Amin, E. A.; Welsh, W. J. Highly predictive CoMFA and CoMSIA models for two series of stromelysin-1 (MMP-3) inhibitors elucidate S1’and S1-S2’ binding modes. J. Chem. Inf. Model. 2006, 46, 1775–1783.
(21) Tong, J. B.; Zhan, P.; Bai, M.; Yao, T. L Molecular modeling studies of HIV-1 protease inhibitors using 3D-QSAR, virtual screening and docking simulations. J. Chemometr. 2016, 30, 523–536.
(22) Raichurkar, A. V.; Kulkarni V. M. Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA. J. Med. Chem. 2003, 46, 4419–4427.
(23) Pham, V. C.; Min, J. C.; Kim, T. W. CoMFA and CoMSIA studies on 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione as PGE2 production inhibitor. B. Kor. Chem. Soc. 2012, 33, 305–308.
(24) Ding, Y. L.; Lyu, Y. C.; Leong, M. K. In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach. Toxicol. IN. Vitro. 2017, 40, 102–114.
(25) Dong, M. H.; Chen, H. F.; Ren, Y. J. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors. Bioorgan. Med. Chem. 2015, 24, 73–84.
(26) Lv, Y. Y.; Yin, C. S.; Liu, H. Y. 3D-QSAR study on atmospheric half-lives of POPs using CoMFA and CoMSIA. J. Environ. Sci. 2018, 20, 1433–1438.
(27) J. B. Bhonsle.; V. Divakaramenon.; D. P. Huddler.; Magill, A. J.; Hicks, R. P. Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J. Med. Chem. 2008, 50, 6545–6553.
(28) Gao, X. L.; Liu, D. H.; Wang, Z. Quantitative Structure Tribo-Ability Relationship for Organic Compounds as Lubricant Base Oils Using CoMFA and CoMSIA. J. Tribol. 2016, 138–144.
(29) Joo, Y. L.; Kwangho, L. 3D-QSAR studies on chemical features of 3-(benzo(d)oxazol-2-yl)pyridine-2-amines in the external region of c-met active site. B. Korn. Chem. Soc. 2013, 12, 3553–3558.
(30) Shibi, I. G.; Aswathy, L.; Jisha, R. S.; Masand, V. H.; Divyachandran, A.; Gajbhiye, J. M. Molecular docking and QSAR analyses for understanding the antimalarial activity of some 7-substituted-4-aminoquinoline derivatives. Eur. J. Pharm. Sci. 2015, 77, 9–23.
(31) Wan Z.; Hu D.; Li P.; Xie, D.; Gan, X. Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety. Molecules 2015, 20, 11861–11874.