REFERENCES
(1) Prajapati, D. G.; Ramajayam, R.; Yadav, M. R. The search for potent, small molecule NNRTIs: a review. Bioorg. Med. Chem. 2009, 17, 57445762.
(2) De Béthune, M. P. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). Antivir. Res. 2010, 85, 7590.
(3) Zhu, J. J.; Cao, J. Y.; Peng, Z. Advances in the development of new generation of HIV-1 non-nucleoside reverse transcriptase inhibitors. Chin. J. New Drug. 2009, 18, 206212.
(4) Srikanth, K.; Kumar, C. A.; Ghosh, B. Synthesis, screening and quantitative structure-activity relationship (QSAR) studies of some glutamine analogues for possible anticancer activity. Bioorg. Med. Chem. 2002, 10, 21192131.
(5) Tong, J. B.; Bai, M.; Zhao, X. 3D-QSAR and docking studies of HIV-1 protease inhibitors using R-group search and Surflex-dock. Mel. Chem. Res. 2016, 25, 26192630.
(6) Qu, R.; Liu, H.; Feng, M. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. J. Chem. Eng. Data 2012, 57, 24422455.
(7) Damale, M. G.; Harke, S. N.; Kalam Khan, F. A. Recent advances in multidimensional QSAR (4D-6D): a critical review. Mini-Rev. Med. Chem. 2014, 14, 3555.
(8) Verma, J.; Khedkar, V. M.; Coutinho, E. C. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem. 2010, 10, 95115.
(9) Ye, Y.; Liao, Q.; Wei, J. Q. 3D-QSAR study of corticotropin-releasing factor 1 antagonists and pharmacophore-based drug design. Neurochem. Int. 2010, 56, 107117.
(10) Patil, R. B.; Barbosa, E. G.; Sangshetti, J. N. LQTA-R: a new 3D-QSAR methodology applied to a set of DGAT1 inhibitors. Comput. Bio. Chem. 2018, 74, 123131.
(11) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 59595967.
(12) Cramer, R. D. Topomer CoMFA: a design methodology for rapid lead optimization. J. Med. Chem. 2003, 46, 374388.
(13) Cramer, R. D.; Cruz, P.; Stahl, G. Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using Topomer CoMFA. J. Chem. Inf. Model. 2008, 48, 21802195.
(14) Cramer, R D.; Wendt, B. Pushing the boundaries of 3D-QSAR. J. Comput. Aid. Mol. Des. 2007, 21, 2332.
(15) Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109130.
(16) Cramer, R. D.; Soltanshahi, F.; Jilek, R. AllChem: generating and searching 10(20) synthetically accessible structures. J. Comput. Aid. Mol. Des. 2007, 21, 341350.
(17) Zhang, M. Variable Optimization Is Used for Quantitative Structure-activity and Spectral Modeling. Master Thesis, Northwest Normal University 2016, p161.
(18) Xu, B.; Chu, F.; Zhang, Y. A series of new ligustrazine-triterpenes derivatives as anti-tumor agents: design, synthesis, and biological evaluation. Int. J. Mol. Sci. 2015, 16, 2103521055.
(19) Swalina, C. W.; Zauhar, R. J.; Degrazia, M. J. Derivation of 13C chemical shift surfaces for the anomeric carbons of oligosaccharides and glycopeptides using ab initio methodology. J. Biomol. Nmr. 2001, 21, 4961.
(20) Jilek, R. J.; Cramer, R. D. Topomers: a validated protocol for their self-consistent generation. J. Chem. Inf. Comput. Sci. 2004, 44, 12211227.
(21) Ferreira; Márcia, M. C. Multivariate QSAR. J. Braz. Chem. Soc. 2002, 13, 742753.
(22) Clark, M.; Cramer, R. D.; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 9821012.
(23) Tong, J. B.; Li, Y. Y.; Jiang, G. Y. Application of an R-group search technique in the molecular design of dipeptidyl boronic acid proteasome inhibitors. J. Serb. Chem. Soc. 2016, 82, 10251037.
(24) Irwin, J. J.; Sterling, T.; Mysinger, M. M. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 17571768.
(25) Ding, K.; Kong, X.; Wang, J. Side chains of parabens modulate antiandrogenic activity: in vitro and molecular docking studies. Environ. Sci. Technol. 2017, 51, 64526460.
(26) Clark, R. D.; Strizhev, A.; Leonard, J. M. Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model. 2002, 20, 281295.
(27) Roy, P. P.; Leonard, J. T.; Roy, K. Exploring the impact of size of training sets for the development of predictive QSAR models. Chemom. Intell. Lab. Syst. 2008, 90, 3142.
(28) Tong, J. B.; Bai, M.; Zhao, X. 3D-QSAR and docking studies of HIV-1 protease inhibitors using R-group search and Surflex-dock. Med. Chem. Res. 2016, 25, 26192630.
(29) Muegge, I.; Martin, Y. C. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem. 1999, 42, 791804.
(30) Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995, 245, 4353.
(31) Eldridge, M. D.; Murray, C. W.; Auton, T. R. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aid. Mol. Des. 1997, 11, 425445.
(32) Lu, W.; Zhang, Y. M.; Shuai, L. U. Molecular docking and 3D-QSAR studies on a series of fused heterocyclic amides as B-Raf inhibitors. Chin. J. Struct. Chem. 2017, 36, 15681585.
(33) Tong, J. B.; Zhan, P.; Bai, M. Molecular modeling studies of human immunodeficiency virus type 1 protease inhibitors using three-dimensional quantitative structure-activity relationship, virtual screening, and docking simulations. J. Chemometr. 2016, 30, 523536.
(34) Huang, D.; Liu, Y.; Shi, B. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J. Mol. Graph. Model. 2013, 45, 6583.
|