a (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
b (University of Chinese Academy of Sciences, Beijing 100049, China)
c (School of Physical Science and Technology, Shanghai Tech. University, Shanghai 201210, China)
d (Shanghai Institute of Ceramics of the Chinese Academy of Sciences, Shanghai 200050, China)
Controlled Synthesis and Optical Properties of Lanthanide-doped Na3ZrF7 Nanocrystals
FU Hu-Hui; LIU Yong-Sheng;JIANG Fei-Long;HONG Mao-Chun
a (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
b (University of Chinese Academy of Sciences, Beijing 100049, China)
c (School of Physical Science and Technology, Shanghai Tech. University, Shanghai 201210, China)
d (Shanghai Institute of Ceramics of the Chinese Academy of Sciences, Shanghai 200050, China)
In this paper, we report for the first time the controlled synthesis of lanthanide ion (Ln3+)-doped tetragonal-phase Na3ZrF7 nanocrystals (NCs) via a high-temperature co-precipitation approach. The as-synthesized Na3ZrF7 NCs are systematically studied by utilizing the XRD, TEM as well as high-resolution photoluminescence (PL) spectroscopy. The morphology and size for the as-synthesized Na3ZrF7 NCs can be finely controlled by changing the experimental parameters such as the amount of precursor, solvent ratio, reaction temperature and time. By utilizing the red-emitting Eu3+ ion as an efficient optical/structural probe, the successful hetero-valence doping of Ln3+ activators in the lattices of Na3ZrF7 NCs is well-established regardless of their different valences and radii between host Zr4+ ion and Ln3+ dopant. As a result, intense upconversion (UC) luminescence (UCL) ranging from UV to visible and to NIR spectral regions can be readily achieved after the doping of typical UCL couples of Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Ho3+ into the lattices of Na3ZrF7 NCs when excited by using a 980-nm NIR diode laser.
This work was supported by the Strategic Priority Research Program of CAS (XDB20000000), the NSFC (Nos. 21390392, 21473205, and 21731006), Youth Innovation Promotion Association of CAS,and the Natural Science Foundation of Fujian Province (No. 2017J01038)
付虎辉;刘永升;江飞龙;洪茂椿. 稀土掺杂Na3ZrF7纳米晶的可控合成和发光性能研究[J]. 结构化学, 2018, 37(11): 1737-1748.
FU Hu-Hui; LIU Yong-Sheng;JIANG Fei-Long;HONG Mao-Chun. Controlled Synthesis and Optical Properties of Lanthanide-doped Na3ZrF7 Nanocrystals. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(11): 1737-1748.
REFERENCES
(1) Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924936.
(2) Drees, C.; Raj, A. N.; Kurre, R.; Busch, K. B.; Haase, M.; Piehler, J. Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem. Int. Ed. 2016, 55, 1166811672.
(3) Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 2015, 44, 15851607.
(4) Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 2015, 44, 13021317.
(5) Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 1043710446.
(6) Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 2011, 50, 73857390.
(7) Achatz, D. E.; Meier, R. J.; Fischer, L. H.; Wolfbeis, O. S. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 260263.
(8) Liu, J. N.; Bu, W. B.; Shi, J. L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 2017, 117, 61606224.
(9) Zhang, F.; Shi, Q. H.; Zhang, Y. C.; Shi, Y. F.; Ding, K. L.; Zhao, D. Y.; Stucky, G. D. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv. Mater. 2011, 23, 37753779.
(10) Corstjens, P.; Zuiderwijk, M.; Brink, A.; Li, S.; Feindt, H.; Neidbala, R. S.; Tanke, H. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clini. Chem. 2001, 47, 18851893.
(11) Kuningas, K.; Rantanen, T.; Ukonaho, T.; Lo1vgren, T.; Soukka, T. Homogeneous assay technology based on upconverting phosphors. Anal. Chem. 2005, 77, 73487355.
(12) Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 48934896.
(13) Bettinelli, M. Upconversion nanocrystals: bright colours ahead. Nature Nanotech. 2015, 10, 203204.
(14) Zou, X.; Liu, Y.; Zhu, X.; Chen, M.; Yao, L.; Feng, W.; Li, F. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale 2015, 7, 41054113.
(15) Yuan, W.; Yang, D.; Su, Q.; Zhu, X.; Cao, T.; Sun, Y.; Dai, Y.; Feng, W.; Li, F. Intraperitoneal administration of biointerface-camouflaged upconversion nanoparticles for contrast enhanced imaging of pancreatic cancer. Adv. Funct. Mater. 2016, 26, 86318642.
(16) Dong, H.; Sun, L. D.; Feng, W.; Gu, Y.; Li, F.; Yan, C. H. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano. 2017, 11, 32893297.
(17) Zheng, W.; Zhou, S.; Chen, Z.; Hu, P.; Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Huang, M.; Chen, X. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew. Chem. Int. Edit. 2013, 52, 66716676.
(18) Huang, P.; Zheng, W.; Zhou, S.; Tu, D.; Chen, Z.; Zhu, H.; Li, R.; Ma, E.; Huang, M.; Chen, X. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew. Chem. Int. Edit. 2014, 53, 12521257.
(19) Zhang, X.; Ai, F.; Sun, T.; Wang, F.; Zhu, G. Multimodal upconversion nanoplatform with a mitochondria-targeted property for improved photodynamic therapy of cancer cells. Inorg. Chem. 2016, 55, 38723880.
(20) Zeng, L.; Pan, Y.; Zou, R.; Zhang, J.; Tian, Y.; Teng, Z.; Wang, S.; Ren, W.; Xiao, X.; Zhang, J.; Zhang, L.; Li, A.; Lu, G.; Wu, A. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2 over expressed breast cancer. Biomaterials 2016, 103, 116127.
(21) Zou, X.; Xu, M.; Yuan, W.; Wang, Q.; Shi, Y.; Feng, W.; Li, F. A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. Chem. Commun. 2016, 52, 1338913392.
(22) Sun, Y.; Feng, W.; Yang, P.; Huang, C.; Li, F. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 15091525.
(23) Zhuo, Z.; Liu, Y. S.; Liu, D. J.; Huang, P.; Jiang, F. L.; Chen, X. Y.; Hong, M. C. Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence. Chem. Sci. 2017, 8, 50505056.
(24) He, S.; Johnson, N. J. J.; Huu, V. A. N.; Cory, E.; Huang, Y. R.; Sah, R. L.; Jokerst, J. V.; Almutairi, A. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles. Nano. Lett. 2017, 17, 48734880.
(25) Zhai, X. S.; Lei, P. P.; Zhang, P.; Wang, Z.; Song, S. Y.; Xu, X.; Liu, X. L.; Feng, J.; Zhang, H. J. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. Biomaterials 2015, 65, 115123.
(26) Lei, P. P.; Zhang, P.; Yao, S.; Song, S. Y.; Dong, L. L.; Xu, X.; Liu, X. L.; Du, K. M.; Feng, J.; Zhang, H. J. Optimization of Bi3+ in upconversion nanoparticles induced simultaneous enhancement of near-infrared optical and X-ray computed tomography imaging capability. ACS Appl. Mater. Interfaces 2016, 8, 2749027497.
(27) Lei, P. P.; An, R.; Yao, S.; Wang, Q. S.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature. Adv. Mater. 2017, 29, 17005051700508.
(28) An, R.; Lei, P. P.; Zhang, P.; Xu, X.; Feng, J.; Zhang, H. J. Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-doped K0.3Bi0.7F2.4 upconversion nanoparticles. Nanoscale 2018, 10, 13941402.
(29) Quan, Z. W.; Yang, D. M.; Yang, P. P.; Zhang, X. M.; Lian, H. Z.; Liu, X. M.; Lin, J. Uniform colloidal alkaline earth metal fluoride nanocrystals: nonhydrolytic synthesis and luminescence properties. Inorg. Chem. 2008, 47, 95099517.
(30) Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322332.
(31) Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976989.
(32) Sivakumar, S.; van Veggel, F. C. J. M.; Raudsepp, M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles. J. Am. Chem. Soc. 2005, 127, 1246412465.
(33) Li, C.; Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 2010, 20, 68316847.
(34) Schietinger, S.; Aichele, T.; Wang, H. Q.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano. Lett. 2010, 10, 134138.
(35) Boyer, J. C.; Gagnon, J.; Cuccia, L. A.; Capobianco, J. A. Synthesis, characterization, and spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4 core/shell nanoparticles. Chem. Mater. 2007, 19, 33583360.
(36) Li, L. Y.; Yu, Y.; Zhou, Z. H.; Li, Q. Sol-gel processing of a transparent upconversion luminescent film with β-NaYF4:Yb3+, Er3+ microrods as activator. Chin. J. Struc. Chem. 2014, 33, 18751880.
(37) Liu, H. S.; Xu, H. D.; Huang, Q. M.; Cao, W. B.; Yu, H.; Yu, Y. Upconversion luminescence properties of NaY0.92Yb0.05Er0.03F4 enhanced by Zr4+ codoping. Chin. J. Struct. Chem. 2017, 36, 17431751.
(38) Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011, 32, 29592968.
(39) Jalil, R. A.; Zhang, Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008, 29, 41224128.
(40) Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 32663271.
(41) Hou, Z. Y.; Li, C. X.; Ma, P. A.; Li, G. G.; Cheng, Z. Y.; Peng, C.; Yang, D. M.; Yang, P. P.; Lin, J. Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3+@Silica fiber nanocomposite. Adv. Funct. Mater. 2011, 21, 23562365.
(42) Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles. Nature Mater. 2011, 10, 968973.
(43) Boyer, J. C.; Manseau, M. P.; Murray, J. I.; van Veggel, F. C. J. M. Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir. 2010, 26, 11571164.
(44) Chen, G. Y.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Agren, H.; Prasad, P. N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. Acs Nano. 2012, 6, 29692977.
(45) Wang, F.; Sun, L. D.; Gu, J.; Wang, Y. F.; Feng, W.; Yang, Y.; Wang, J. F.; Yan, C. H. Selective heteroepitaxial nanocrystal growth of rare earth fluorides on sodium chloride: synthesis and density functional calculations. Angew. Chem. Int. Ed. 2012, 51, 87968799.
(46) Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K. S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S. I.; Kim, H.; Park, S. P.; Park, B. J.; Kim, Y. W.; Lee, S. H.; Yoon, S. Y.; Song, I. C.; Moon, W. K.; Suh, Y. D.; Hyeon, T. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 2009, 21, 44674471.
(47) Chen, D.; Lei, L.; Zhang, R.; Yang, A.; Xu, J.; Wang, Y. Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem. Commun. 2012, 48, 1063010632.
(48) Ju, Q.; Liu, Y. S.; Li, R. F.; Liu, L. Q.; Luo, W. Q.; Chen, X. Y. Optical spectroscopy of Eu3+-doped BaFCl nanocrystals. J. Phys. Chem. C 2009, 113, 23092315.
(49) Grzechnik, A.; Bouvier, P.; Mezouar, M.; Mathews, M. D.; Tyagi, A. K.; Kohler, J. Hexagonal Na1.5Y1.5F6 at high pressures. J. Solid State Chem. 2002, 165, 159164.
(50) Tanner, P. A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem. Soc. Rev. 2013, 42, 5090101.
(51) Bednarkiewicz, A.; Mech, A.; Karbowiak, M.; Strek, W. Spectral properties of Eu3+ doped NaGdF4 nanocrystals. J. Lumin. 2005, 114, 247254.
(52) Strauss, M.; Destefani, T. A.; Sigoli, F. A.; Mazali, I. O. Crystalline SnO2 nanoparticles size probed by Eu3+ luminescence. Cryst. Growth Des. 2011, 11, 45114516.
(53) Tu, D. T.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Liu, L. Q.; Chen, X. Y. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals. Angew. Chem. Int. Ed. 2013, 52, 11281133.