REFERENCES
(1) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.
(2) Janiak, C. Engineering coordination polymers towards applications. Dalton. Trans. 2003, 14, 2781–2804.
(3) Cui, Y.; Li, B.; He, H. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493.
(4) Cui, Y.; Yue, Y.; Qian, G. Luminescent functional metal-organic frameworks. Chem. Rev. 2011, 112, 1126–1162.
(5) Lu, K.; Ma, D. Y.; Sakiyama, H. Two metal-organic frameworks constructed from 2,5-thiophenedicarboxylate and methyl-functionalized N-donorligands with magnetic, luminescent and catalytic studies. Inorg. Chem. Commun. 2018, 91, 39–43.
(6) Lin, L. C.; Paik, D.; Kim, J. Understanding gas adsorption in MOF-5/graphene oxide composite materials. Phys. Chem. Chem. Phys. 2017, 19, 11639–11644.
(7) Li, B.; Wen, H. M.; Zhou, W. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 2014, 5, 3468–3479.
(8) Kumar, G.; Guda, R.; Husain, A. A functional Zn(II) metallacycle formed from an N-heterocyclic carbene precursor: a molecular sensor for selective recognition of Fe3+ and IO4– ions. Inorg. Chem. 2017, 56, 5017–5025.
(9) Zhang, J.; Huo, L.; Wang, X. Structural diversity, magnetic properties, and luminescent sensing of the flexible tripodal ligand of 1,3,5-tris(4- carbonylphenyloxy) benzene based Mn(II)/Cd (II) coordination polymers. Cryst. Growth Des. 2017, 17, 5887–5897.
(10) Li, Y.; Song, H.; Chen, Q. Two coordination polymers with enhanced ligand-centered luminescence and assembly imparted sensing ability for acetone. J. Mater. Chem. A 2014, 2, 9469–9473.
(11) Kan, W. Q.; Liu, B.; Yang, J. A series of highly connected metal-organic frameworks based on triangular ligands and d10 metals: syntheses, structures, photoluminescence, and photocatalysis. Cryst. Growth Des. 2012, 12, 2288–2298.
(12) (12 Deenadayalan, M. S.; Sharma, N.; Verma, P. K. Visible-light-assisted photocatalytic reduction of nitroaromatics by recyclable Ni(II)-porphyrin metal-organic framework (MOF) at RT. Inorg. Chem. 2016, 55, 5320–5327.
(13) Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379.
(14) Zhang, M. W.; Bosch, M.; Thomas, G. III. Rational design of metal-organic frameworks with anticipated porosities and functionalities. Cryst. Eng. Comm. 2014, 16, 4069–4083.
(15) Lu, W. G.; Wei, Z. W.; Gu, Z. Y. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.
(16) Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.
(17) Qin, J. S.; Yuan, S.; Wang, Q. Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J. Mater. Chem. A 2017, 5, 4280–4291.
(18) Li, C. P.; Du, M. Role of solvents in coordination supramolecular systems. Chem. Comm. 2011, 47, 5958–5972.
(19) Wang, X. L.; Xiong, Y.; Liu, G. C. Effect of solvents and metal ions on the structural diversity of coordination polymers based on a dipyridylamide ligand: construction, fluorescent and photocatalytic properties. Polyhedron 2016, 119, 590–596.
(20) Song, M.; Mu, B.; Huang, R. D. Syntheses, structures, electrochemistry, and electrocatalysis of three copper(II) coordination polymers constructed from 5-[4-(1H-Imidazol-1-yl) phenyl]-1H-tetrazole. Z. Anorg. Allg. Chem. 2017, 643, 235–242.
(21) Miao, S. B.; Li, Z. H.; Xu, C. Y.; Ji, B. M. A new 3-fold interpenetrating 3D Zn(II) metal-organic framework: synthesis, structure and luminescent property. Chin. J. Struct. Chem. 2016, 35, 1960–1966.
(22) Li, Y. P.; Wang, X. X.; Li, S. N. The power of heterometalation through lithium for helix chain-based noncentrosymmetric metal-organic frameworks with tunable second-harmonic generation effects. Cryst. Growth Des. 2017, 17, 5634–5639.
(23) Almasi, M.; Zelenak, V.; Zelenakova, A. Characterization and magnetic properties of two novel copper(II) coordination polymers prepared by different synthetic techniques. Inorg. Chem. Commun. 2016, 74, 66–71.
(24) Wang, J. J.; Cao, Z.; Tang, L. Two metal ion-controlled Zn(II)/Cd(II) coordination polymers based on 1,3,5-benzenetricarboxylic acid. Chin. J. Struct. Chem. 2017, 36, 1617–1623.
(25) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany 1997.
(26) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany 1997.
(27) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.
(28) Luo, Y. H.; Tao, C. Z.; Zhang, D. E. Three new three dimensional Zn(II)-benzenetetracarboxylate coordination polymers: syntheses, crystal structures and luminescent properties. Polyhedron 2017, 123, 69–74.
(29) Guerrero, M.; Vazquez, S.; Ayllon, J. A. Zn(II) and Cd(II) coordination dimers based on mixed benzodioxole-carboxylate and N-donor ligands: synthesis, characterization, crystal structures and photoluminescence properties. Chem. Select. 2017, 2, 632–639.
(30) Bellamy, L. J. The Infra-red Spectra of Complex Molecules. Wiley, New York 1958.
(31) Cui, P.; Chen, Z.; Gao, D. L. Syntheses, structures, and photoluminescence of a series of three-dimensional Cd(II) frameworks with a flexible ligand, 1,5-bis(5-tetrazolo)-3-oxapentane. Cryst. Growth Des. 2010, 10, 4370–4378.
(32) Wang, X. B.; Lu, W. G.; Zhong, D. C. Two zinc(II) metal-organic frameworks with mixed ligands of 5-amino-tetrazolate and l,2,4,5-benzenetetracarboxylate: synthesis, structural diversity and photoluminescent properties. J. Solid State Chem. 2017, 250, 83–89.
|