a (Fujian Key Laboratory of Advanced Materials (Xiamen University), Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China)
b (State Key Laboratory of Comprehensive Utilization of Low-grade Refractory Gold Ores, Shanghang 364200, China)
A New Modification of Tellurite Phosphate: β-Te3O3(PO4)2
LI Long;ZHUANG Rong-Chuan;MI Jin-Xiao;HUANG Ya-Xi#br#
a (Fujian Key Laboratory of Advanced Materials (Xiamen University), Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China)
b (State Key Laboratory of Comprehensive Utilization of Low-grade Refractory Gold Ores, Shanghang 364200, China)
A new modification of tellurite phosphate, β-Te3O3(PO4)2, has been synthesized under hydrothermal conditions and its crystal structure was determined by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P21/n (No. 14), with a = 11.115(5), b = 4.7033(19), c = 17.287(7) Å, β = 106.086(5)°, V = 868.3(6) Å3, Z = 4, P2Te3O11, Mr = 620.74, Dc = 4.748 g/cm3, μ(MoKα) = 10.438 mm–1 and F(000) = 1096. The final full-matrix least-squares refinement converged to R = 0.0227, wR = 0.0534 for 1984 observed reflections with I > 2σ(I), and R = 0.0240, wR = 0.0540 for all data (2070) and S = 1.117. β-Te3O3(PO4)2 is polymorphic with the known α-Te3O3(PO4)2 (Weil H. M. et al. Z. Anorg. Allg. Chem. 2003, 629, 1068-1072). The crystal structure of β-Te3O3(PO4)2 features a three-dimensional (3D) network composed of Te6O2220‒ hexanuclear clusters interconnected by PO4 groups. Te6O22 hexanuclear cluster is built from three Te2O8 dimers (edge-sharing TeO5 square pyramids) linked to each via sharing O-corners. The structure difference between α- and β-forms of Te3O3(PO4)2 lies in the polymerization of tellurite oxides TenOm. 1D infinite 1∞{[Te3O11]10‒} single chains are presented in α-Te3O3(PO4)2, while 0D discrete Te6O22 hexanuclear clusters are observed for β-Te3O3(PO4)2. Moreover, thermal analyses, infrared spectra and UV-Vis-NIR diffuse reflectance are also presented.
李龙;庄荣传;宓锦校;黄雅熙. 一种新型的同质多象亚碲磷酸盐:β-Te3O3(PO4)2[J]. 结构化学, 2018, 37(9): 1417-1425.
LI Long;ZHUANG Rong-Chuan;MI Jin-Xiao;HUANG Ya-Xi. A New Modification of Tellurite Phosphate: β-Te3O3(PO4)2. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(9): 1417-1425.
REFERENCES
(1) Halasyamani, P. S.; Poeppelmeier, K. R., Noncentrosymmetric Oxides. Chem. Mater. 1998, 10(10), 2753−2769.
(2) Kim, M. K.; Kim, S. H.; Chang, H. Y.; Halasyamani, P. S.; Ok, K. M., New Noncentrosymmetric Tellurite Phosphate Material: Synthesis, Characterization, and Calculations of Te2O(PO4)2. Inorg. Chem. 2010, 49(15), 7028−7034.
(3) Shen, Y.-G.; Zhao, S.-G.; Luo, J.-H., Study on Nonlinear Optical Properties of Te2HPO7 Crystal. J. Synth. Cryst. 2016, 45(6), 1487−1491.
(4) Christy, A. G.; Mills, S. J.; Kampf, A. R., A review of the structural architecture of tellurium oxycompounds. Mineral. Mag. 2016, 80(3), 415−545.
(5) Halasyamani, P. S., Asymmetric Cation Coordination in Oxide Materials: Influence of lone-pair Cations on the Intra-octahedral Distortion in d0 Transition Metals. Chem. Mater. 2004, 16(19), 3586−3592.
(6) Chen, J.; Ali, K. M.; Xiao, C.-X.; Yan, Y.-X.; Dai, Y.; Chen, L., Recent Advances in Nonlinear Optical Phosphate Materials. Chin. J. Struct. Chem. 2017, 36(11), 1837−1858.
(7) Kim, J. H.; Halasyamani, P. S., A rare multi-coordinate tellurite, NH4ATe4O9•2H2O (A = Rb or Cs): The occurrence of TeO3, TeO4, and TeO5 Polyhedra in the same material. J. Solid State Chem. 2008, 181(8), 2108−2112.
(8) Mao, J.-G.; Jiang, H.-L.; Kong, F., Structures and properties of functional metal selenites and tellurites. Inorg. Chem. 2008, 47(19), 8498-8510.
(9) Ok, K. M., Toward the Rational Design of Novel Noncentrosymmetric Materials: Factors Influencing the Framework Structures. Acc. Chem. Res. 2016, 49(12), 2774−2785.
(10) Alcock, N. W.; Harrision, W. D., Refinement of the Structure of Tellurium Phosphate Te2O3HPO4. Acta Crystallogr. 1982, B38, 1809.
(11) Ok, K. M.; Orzechowski, J.; Halasyamani, P. S., Synthesis, structure, and characterization of two new layered mixed-metal phosphates, BaTeMO4(PO4) (M = Nb5+ or Ta5+). Inorg. Chem. 2004, 43(3), 964−968.
(12) Ok, K. M.; Halasyamani, P. S., Synthesis, structure, and characterization of a new one-dimensional tellurite phosphate, Ba2TeO(PO4)2. J. Solid State Chem. 2006, 179(5), 1345−1350.
(13) Xia, M. J.; Shen, S. P.; Lu, J.; Sun, Y.; Li, R. K., Ba2Cu2Te2P2O13: A new telluro-phosphate with S=1/2 Heisenberg chain. J. Solid State Chem. 2015, 230, 75−79.
(14) Zimmermann, I.; Kremer, R. K.; Johnsson, M., Synthesis, crystal structure and magnetic properties of the open framework compound Co3Te2O2(PO4)2(OH)4. J. Solid State Chem. 2011, 184(11), 3080−3084.
(15) Mayer, H.; Weil, M., Synthesis and Crystal Structure of Te3O3(PO4)2, a Compound with 5-fold Coordinate Tellurium(IV). Z Anorg Allg Chem. 2003, 629, 1068−1072.
(16) Mayer, H.; Wien, H., Die Kristallstruktur von Te2O3(HPO4). Z. Kristallogr. 1975, 141, 354−362.
(17) chmidt, P.; Dallmann, H.; Kadner, G.; Krug, J.; Philipp, F.; Teske, K., The Thermochemical Behaviour of Te8O10(PO4)4 and its Use for Phosphide Telluride Synthesis. Z. Anorg. Allg. Chem. 2009, 635(13-14), 2153−2161.
(18) Guesdon, A.; Raveau, B., A Series of Mo(VI) Monophosphates Involving the Lone Pair Cation Te(IV): A2TeMo2O6(PO4)2 (A = K, Rb, Tl, Cs). Chem Mater. 2000, 12(8), 2239−2243.
(19) Zimmermann, I.; Johnsson, M., Stacking faults in a layered cobalt tellurium phosphate oxochloride. Solid State Sci. 2015, 40, 67−70.
(20) Xia, M.; Li, R. K., Structural variety in zinc telluro-phosphates: syntheses, crystal structures and characterizations of Sr2Zn3Te2P2O14, Pb2Zn3Te2P2O14 and Ba2Zn2TeP2O11. Dalton Trans. 2016, 45(17), 7492−7499.
(21) Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.
(22) Farrugia, L. J., Wingx: suite for small-molecule single-crystal crystallography. J Appl Crystallogr. 1999, 32, 837−838.
(23) Spek, A. L., PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr C Struct Chem. 2015, 71(Pt 1), 9−18.
(24) Brese, N. E.; M., O. K., Bond-Valence Parameters for Solids. Acta Crystallogr., Sect. B: Struct. Sci. 1991, 47, 192−197.
(25) Wen, L.; Huang, Y.-X.; Sun, W.; Liu, B.; Huang, C.-Z.; Mi, J.-X.; Zhuang, R.-C.; Tang, M.-B.; Zhao, J.-T., One-dimensional Vanadyl Phosphate Containing the Tancoite-like {VⅣO(HPO4)2}2– Chain. Chin. J. Struct. Chem. 2013, 12, 008.
(26) Liu, L.-C.; Ren, W.-J.; Huang, Y.-X.; Pan, Y.; Mi, J.-X., Canted antiferromagnetism in KNi3PO3(F,OH)2PO2(OH)2F2 with a stair-case Kagome lattice. J. Solid State Chem. 2017, 254, 160−165.
(27) Aydın, C.; Abd El-sadek, M. S.; Zheng, K.; Yahia, I. S.; Yakuphanoglu, F., Synthesis, Diffused Reflectance and Electrical Properties of Nanocrystalline Fe-doped ZnO via Sol–Gel Calcination Technique. Opt. Laser Technol. 2013, 48, 447−452.
(28) Simmons, E. L., Diffuse Reflectance Spectroscopy: a Comparison of the Theories. Appl. Optics. 1975, 14, 1380−1386.