a (School of Material Science and Engineering,Anhui University of Science and Technology, Huainan 232001, China)
b (School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China)
Electronic, Magnetic and Photocatalytic Properties in (Fe, Ni)-Codoped SrTiO3 with and without Oxygen Vacancies: a First-principles Study
WANG Yue-Qin;LIU Yin;ZHANG Ming-Xu;MIN Fan-Fei
a (School of Material Science and Engineering,Anhui University of Science and Technology, Huainan 232001, China)
b (School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China)
The enhanced magnetic and photocatalytic properties of (Fe, Ni)-codoped SrTiO3 with and without oxygen vacancies are investigated using the first-principles calculations based on the density functional theory plus U calculations. It is revealed that the structure phase transition associated with O vacancy imposes significant influence on magnetic and optical properties. The results show that the Ni oxidation state in (Fe, Ni)-codoped SrTiO3 is about 2+, which is different from that of 4+ in Ni monodoped SrTiO3 in previous experimental investigations. The presence of O vacancy leads to a semiconductor-half-metal transition in codoped SrTiO3. The (Fe, Ni)-codoped SrTiO3 without O vacancy produces an enhanced magnetization and induces a giant magnetic moment of 3 μB, while a relatively small magnetic moment of 0.36 μB is generated in (Fe, Ni)-codoped SrTiO3 with O vacancy. The origin of the large enhancement of magnetic moment in (Fe, Ni)-codoped SrTiO3 without O vacancy was ascribed to the reduced hybridization in Fe–O bonds and the enhanced hybridization in Ni–O bonds, which modulated antiferromagnetic spin structure. The dispersion of the conduction bands and valence bands of codoped SrTiO3 is enhanced after codoping, which benefits the photocatalytic performance. Furthermore, the (Fe, Ni)-codoped SrTiO3 shows a remarkable red-shift of absorption spectra edge and induces a strong optical absorption in the visible light region, indicating that it could be taken as a potential candidate for photocatalytic materials.
Supported by the National Natural Science Foundation of China (No. 51474011), the Postdoctoral Science Foundation of China (No. 2014M550337), the Key Technologies R&D Program of Anhui Province (No. 1604a0802122, 17030901091), and the academic funding project for the top talents of colleges and universities (No. gxbjZD14)
汪月琴;刘银;张明旭;闵凡飞. 空穴调制(Fe, Ni)共掺杂SrTiO3电子结构、磁学和光催化性能的第一性原理研究[J]. 结构化学, 2018, 37(7): 1025-1036.
WANG Yue-Qin;LIU Yin;ZHANG Ming-Xu;MIN Fan-Fei. Electronic, Magnetic and Photocatalytic Properties in (Fe, Ni)-Codoped SrTiO3 with and without Oxygen Vacancies: a First-principles Study. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(7): 1025-1036.
REFERENCES
(1) Zou, F.; Jiang, Z.; Qin, X. Q.; Zhao, Y. X.; Jiang, L. Y.; Zhi, J. F.; Xiao, T. C.; Edwards, P. P. Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity. Chem. Commun. 2012, 48, 8514–8516.
(2) Weston, M.; Reade, T. J.; Britton, A. J. A single centre water splitting dye complex adsorbed on rutile TiO2(110): photoemission, X-ray absorption, and optical spectroscopy. J. Chem. Phys. 2011, 135, 114703-1-114703-8.
(3) Hoffman, M. R.; Matin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.
(4) Linsebigler, A.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.
(5) Sulaeman, U.; Yin, S.; Sato, T. Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3. Appl. Cata. B Environ. 2011, 105, 206–210.
(6) Yun, J. N.; Zhang, Z. Y.; Yan, J. F.; Zhao, W. First-principles study of Sc-doping effect on the stability, electronic strucure and photocatalytic properties of Sr2TiO4. Thin Solid Film 2013, 542, 276–280.
(7) Cheng, C.; Amini, A.; Zhu, C.; Xu, Z. L.; Song, H. S.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 2014, 4, 4181–4185.
(8) Irie, H.; Maruyama, Y.; Hashimoto, K. Ag+- and Pb2+-doped photocatalysts, a correlation between band structure and photocatlytic activity. J. Phys. Chem. C 2007, 111, 1847–1852.
(9) Yun, J. N.; Zhang, Z. Y.; Yan, J. F.; Zhao, W. First-principles study of structural stability and electronic structure of La-doped Sr1.9375La0.0625TiO3.96875. J. Appl. Phys. 2010, 107, 218–222.
(10) Liu, Y.; Qian, Q.; Li, J. J.; Zhu, X. G.; Zhang, M. X.; Zhang, T. S. Photocatalytic properties of SrTiO3 nanocubes synthesized through molten salt modified pechini route. J. Nanosci. Nanotech. 2016, 16, 12321–12325.
(11) Yun, J. N.; Zhang, Z. Y.; Yan, J. F.; Deng, Z. H. First-principles study of La and Sb-doping effects on electronic structure and optical properties of SrTiO3. Chin. Phys. B 2010, 19, 433–440.
(12) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 2004, 108, 8992–8995.
(13) Zhang, C.; Jia, Y. Z.; Jing, Y.; Yao, Y.; Ma, J.; Sun, J. H. Effect of non-metal elements (B, C, N, F, P, S) mono-doping as anions on electronic structure of SrTiO3. Comput. Mater. Sci. 2013, 79, 69–74.
(14) Piskunov, S.; Lisovski, O.; Begens, J.; Bocharov, D.; Zhukovskii, Y. F.; Wessel, M.; Spohr, E. C-, N-, S- and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: prediction from first-principles. J. Phys. Chem. C 2015, 119, 18686–18696.
(15) Zhang, C.; Jiang, N.; Xu, S. A.; Li, Z.; Liu, X. L.; Cheng, T. L.; Han, A. X.; Lv, H. T.; Sun, W. L.; Hou, Y. L. Towards high visible light photocatalytic activity in rare earth and N co-doped SrTiO3: a first principles evaluation and prediction. RSC Adv. 2017, 7, 16282–16289.
(16) Li, Y. X.; Chen, G.; Zhang, H. J.; Li, Z. H. Electronic structure and photocatalytic water splitting of lanthanum-doped Bi2AlNbO7. Mater. Res. Bull. 2009, 44, 741–746.
(17) Bi, Y. Q.; Ehsan, M. F.; Jin, J.; Huang, Y.; Jin, J. R.; He, T. Synthesis of Cr-doped SrTiO3 photocatalyst and its application in visible-light-driven transformation of CO2 into CH4. J. CO2 Util. 2015, 12, 43–48.
(18) Siddheswaran, R.; Životský, O.; Hendrych, A.; Novák, P.; Šutta, P.; Medlín, R. Structural and magnetic properties of the transition metals (TM = Co, Ni) and Nb co-doped SrTiO3 thin films. Mater. Res. Bull. 2016, 83, 193–200.
(19) Kim, H. S.; Bi, L.; Dionne, G. F.; Ross, C. A. Magnetic and magneto-optical properties of Fe-doped SrTiO3 films. Appl. Phys. Lett. 2008, 93, 092506-1-092506-3.
(20) Shen, T.; Hu, C.; Dai, H. L.; Yang, W. L.; Liu, H. C.; Tan, C. L.; Wei, X. L. First principles calculations of magnetic, electronic and optical properties of (Mn-Fe) co-doped SrTiO3. Optik 2016, 127, 3055–3058.
(21) Zhang, S. Y.; Lin, Y. H.; Nan, C. W.; Zhao, R.; He, J. Magnetic and electrical properties of (Mn, La)-codoped SrTiO3 thin films. J. Am. Chem. Soc. 2010, 91, 3263–3266.
(22) Gu, M. Q.; Wang, J. L.; Wu, X. S.; Zhang, G. P. Stabilities of the intrinsic defects on SrTiO3 surface and SrTiO3/LaAlO3 interface. J. Phys. Chem. C 2012, 116, 24993–24998.
(23) Choudhury, D.; Pal, B.; Sharma, A.; Bhat, S. V.; Sarma, D. D. Magnetization in electron- and Mn-doped SrTiO3. Sci. Rep. 2013, 3, 1433–1436.
(24) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 2004, 108, 8992–8995.
(25) Wang, D. F.; Ye, J. H.; Kato, T.; Kimura, T. Photophysical and photocatalytic properties of SrTiO3 Doped with Cr Cations on different sites. J. Phys. Chem. B 2006, 110, 15824–15830.
(26) Xie, T. H.; Sun, X. Y.; Lin, J. Enhanced photocatalytic degradation of RhB driven by visible light-driven MMCT of Ti(IV)-O-Fe(II) formed in Fe doped SrTiO3. J. Phys. Chem. C 2008, 112, 9753–9759.
(27) Niishiro, R.; Kato, H.; Kudo, A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem. Chem. Phys. 2005, 7, 2241–2245.
(28) Li, F.; Yu, K.; Lou, L. L.; Su, Z.; Liu, S. Theoretical and experimental study of La/Ni co-doped SrTiO3 photocatalyst. Mater. Sci. Engin. B 2010, 172, 136–141.
(29) Subramanian, V.; Roeder, R. K.; Wolf, E. E. Synthesis and UV-visible-light photoactivity of noble-metal-SrTiO3 composites. Ind. Eng. Chem. Res. 2006, 45, 2187–2193.
(30) Wang, J. J.; Fang, T.; Yan, S. C.; Li, Z. S.; Yu, T.; Zou, Z. G. Highly efficient visible light photocatalytic activity of Cr-La codoped SrTiO3 with surface alkalinization: an insight from DFT calculation. Comput. Mater. Sci. 2013, 79, 87–94.
(31) Reunchan, P.; Umezawa, N.; Ouyang, S.; Ye, J. Mechanism of photocatalytic activities in Cr-doped SrTiO3 under visible-light irradiation: an insight from hybrid density-functional calculations. Phys. Chem. Chem. Phys. 2012, 14, 1876–1880.
(32) Yao, W. F.; Ye, J. H. Photocatalytic properties of a novel layered photocatalyst CsLaSrNb2NiO9. Catal. Lett. 2006, 110, 139–142.
(33) Segall, M.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Refson, K.; Yates, J. R.; Payne, M. First principles methods using CASTEP. Z. Fur Kristallogr. 2005, 220, 567–570.
(34) Lutfalla, S.; Shapovalov, V.; Bell, A. T. Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo and Se. J. Chem. Theory Comput. 2011, 7, 2218–2223.
(35) Wang, L.; Maxish, T.; Ceder, G. Oxidation energies of transitionn metal oxides within the GGA+U framework. Phys. Rev. B 2006, 73, 195107-1-195107-6.
(36) Zhou, X.; Shi, J. Y.; Li, C. Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (metal = Mn, Fe and Co). J. Phys. Chem. C 2011, 115, 8305–8311.
(37) Sluchinskaya, I. A.; Lebedev, A. I.; Erko, A. Structural position and charge state of nickel in SrTiO3. Phys. Solid. State. 2014, 56, 449–455.
(38) Knight, J. C.; Manthiram, A. Effect of nickel oxidation state on the structural and electrochemical characteristics of lithium-rich layered oxide cathodes. J. Mater. Chem. A 2015, 3, 22199–22207.
(39) Mahmood, N. B.; Alshakarchi, E. K.; Elouadi, B. Three techniques used to produce BaTiO3 fine powder. J. Mod. Phys. 2011, 2, 1420–1428.
(40) Kudo, A.; Kato, H.; Nakagawa, S. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J. Phys. Chem. B 2000, 104, 571–575.
(41) Inoue, Y.; Kohno, M.; Ogura, S.; Sato, K. Properties of photocatalysts with tunnel structures: formation of a surface lattice O− radical by the UV irradiation of BaTi4O9 with a pentagonal-prism tunnel structure. Chem. Phys. Lett. 1997, 267, 72–76.
(42) Wei, S. H.; Zunger, A. Role of metal d states in II-VI semiconductors. Phys. Rev. B 1988, 37, 8958–8981.
(43) Capizzi, M.; Frova, A. Distortion-enhanced optical absorption in SrTiO3 at the cubic-to-tetragonal transition. Phys. Rev. L 1972, 29, 1741–1744.