a (College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China)
b (School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China)
Molecular Docking, 3D-QSAR and Molecular Dynamics Simulation Studies of Substituted Pyrimidines as Selective Covalent Janus Kinase 3 Inhibitors
CAI Xiao-Li;MA Yu-Zhuo;ZHAO Zhong-Xiang;ZHANG Ling;LIU Ying-Xiang
a (College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China)
b (School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China)
Abstract:Janus kinase 3 (JAK3) is a member of Janus kinase (JAK) family, and it represents a promising target for the treatment of immune diseases and cancers. However, no highly selective inhibitors of JAK3 have been developed. For discovering the binding mechanism of JAK3 and these inhibitors, a molecular modeling study combining molecular docking, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular dynamics and binding free energy calculations was performed on a series of pyrimidine-based compounds which could bind with the unique residue Cys909 of JAK3 kinase as the selective inhibitors of JAK3 in this work. The optimum CoMFA and CoMSIA models were generated based on the conformations obtained by molecular docking. The results showed that the models have satisfactory predicted capacity in both internal and external validation. Furthermore, a 50 ns molecular dynamics simulation was carried out to determine the detailed binding process of inhibitors with different activities. It was demonstrated that hydrogen bond interactions with Leu828, Glu903, Tyr904, Leu905 and Leu956 of JAK3 are significant for activity increase, and the Van der Waals interaction is mainly responsible for stable complex.
This work was supported by the National Natural Science Foundation of China (No 81270054) and the program for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province (No. Yq2013045)
REFERENCES
(1) Williams, N. K.; Bamert, R. S.; Patel, O.; Wang, C.; Walden, P. M.; Wilks, A. F.; Fantino, E.; Rossjohn, J.; Lucet, I. S. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol. 2009, 387, 219232.
(2) Wilks, A. F.; Harpur, A. G.; Kurban, R. R.; Ralph, S. J.; Zurcher, G.; Ziemiecki, A. Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol. Cell. Biol. 1991, 11, 20572065.
(3) Harpur, A. G.; Andres, A. C.; Ziemiecki, A.; Aston, R. R.; Wilks, A. F. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 1992, 7, 13471353.
(4) Johnston, J. A.; Kawamura, M.; Kirken, R. A.; Chen, Y. Q.; Blake, T. B.; Shibuya, K.; Ortaldo, J. R.; McVicar, D. W.; O'Shea, J. J. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 1994, 370, 151–153.
(5) Ihle, J. N. The Janus kinase family and signaling through members of the cytokine receptor superfamily. P. Soc. Exp. Biol. Med. 1994, 206, 268272.
(6) Darnell, J. E. Jr.; Kerr, I. M.; Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 14151421.
(7) O'Shea, J. J.; Kontzias, A.; Yamaoka, K.; Tanaka, Y.; Laurence, A. Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis. 2013, 72 Suppl 2, ii111ii115.
(8) Kawamura, M.; McVicar, D. W.; Johnston, J. A.; Blake, T. B.; Chen, Y. Q.; Lal, B. K.; Lloyd, A. R.; Kelvin, D. J.; Staples, J. E.; Ortaldo, J. R. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. P. Natl. Acad. Sci. USA 1994, 91, 63746378.
(9) Ghoreschi, K.; Laurence, A.; O'Shea, J. J. Janus kinases in immune cell signaling. Immunol. Rev. 2009, 228, 273287.
(10) Flanagan, M. E.; Blumenkopf, T. A.; Brissette, W. H.; Brown, M. F.; Casavant, J. M.; Shang-Poa, C.; Doty, J. L.; Elliott, E. A.; Fisher, M. B.; Hines, M.; Kent, C.; Kudlacz, E. M.; Lillie, B. M.; Magnuson, K. S.; McCurdy, S. P.; Munchhof, M. J.; Perry, B. D.; Sawyer, P. S.; Strelevitz, T. J.; Subramanyam, C.; Sun, J.; Whipple, D. A.; Changelian, P. S. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J. Med. Chem. 2010, 53, 84688484.
(11) Gonzales, A. J.; Bowman, J. W.; Fici, G. J.; Zhang, M.; Mann, D. W.; Mitton-Fry, M. Oclacitinib (APOQUEL((R))) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J. Vet. Pharmacol. Ther. 2014, 37, 317324.
(12) Farmer, L. J.; Ledeboer, M. W.; Hoock, T.; Arnost, M. J.; Bethiel, R. S.; Bennani, Y. L.; Black, J. J.; Brummel, C. L.; Chakilam, A.; Dorsch, W. A.; Fan, B.; Cochran, J. E.; Halas, S.; Harrington, E. M.; Hogan, J. K.; Howe, D.; Huang, H.; Jacobs, D. H.; Laitinen, L. M.; Liao, S.; Mahajan, S.; Marone, V.; Martinez-Botella, G.; McCarthy, P.; Messersmith, D.; Namchuk, M.; Oh, L.; Penney, M. S.; Pierce, A. C.; Raybuck, S. A.; Rugg, A.; Salituro, F. G.; Saxena, K.; Shannon, D.; Shlyakter, D.; Swenson, L.; Tian, S. K.; Town, C.; Wang, J.; Wang, T.; Wannamaker, M. W.; Winquist, R. J.; Zuccola, H. J. Discovery of VX-509 (decernotinib): a potent and selective janus kinase 3 inhibitor for the treatment of autoimmune diseases. J. Med. Chem. 2015, 58, 71957216.
(13) Jr, R. R. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol. Res. 2016, 111, 784803.
(14) Yamaoka, K.; Saharinen, P.; Pesu, M.; Holt, V. E.; Silvennoinen, O.; O'Shea, J. J. The Janus kinases (Jaks). Genome. Biol. 2004, 5, 253.
(15) Leonard, W. J.; O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 1998, 16, 293322.
(16) Wrobleski, S. T.; Pitts, W. J. Chapter 12 advances in the discovery of small molecule JAK3 inhibitors. Annu. Rep. Med. Chem. 2009, 44, 247264.
(17) Cornejo, M. G.; Kharas, M. G.; Werneck, M. B.; Le, B. S.; Moore, S. A.; Ball, B.; Beylot-Barry, M.; Rodig, S. J.; Aster, J. C.; Lee, B. H. Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood 2009, 113, 27462754.
(18) Burmester, G.; Blanco, R.; Charles-Schoeman, C.; Wollenhaupt, J.; Zerbini, C.; Benda, B.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.; Zwillich, S.; Koncz, T.; Soma, K.; Bradley, J.; Mebus, C.; investigators, O. S. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 2013, 381, 451460.
(19) van Vollenhoven, R. F.; Fleischmann, R.; Cohen, S.; Lee, E. B.; García Meijide, J. A.; Wagner, S.; Forejtova, S.; Zwillich, S. H.; Gruben, D.; Koncz, T. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 508519.
(20) Fleischmann, R.; Kremer, J.; Cush, J.; Schulze-Koops, H.; Connell, C. A.; Bradley, J. D.; Gruben, D.; Wallenstein, G. V.; Zwillich, S. H.; Kanik, K. S. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 495507.
(21) Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S. J.; Jones, L. H.; Gray, N. S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 2013, 20, 146159.
(22) London, N.; Miller, R. M.; Krishnan, S.; Uchida, K.; Irwin, J. J.; Eidam, O.; Gibold, L.; Cimermančič, P.; Bonnet, R.; Shoichet, B. K. Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 2014, 10, 10661072.
(23) Goedken, E. R.; Argiriadi, M. A.; Banach, D. L.; Fiamengo, B. A.; Foley, S. E.; Frank, K. E.; George, J. S.; Harris, C. M.; Hobson, A. D.; Ihle, D. C. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. J. Biol. Chem. 2015, 290, 45734589.
(24) Tan, L.; Akahane, K.; Mcnally, R.; Reyskens, K. M. S. E.; Ficarro, S. B.; Liu, S.; Hertersprie, G. S.; Koyama, S.; Pattison, M. J.; Labella, K. Development of selective covalent janus kinase 3 inhibitors. J. Med. Chem. 2015, 58, 65896606.
(25) Thomsen, R.; Christensen, M. H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 33153321.
(26) Cho, S. J.; Tropsha, A. Cross-validated R2-guided region selection for comparative molecular field analysis: a simple method to achieve consistent results. J. Med. Chem. 1995, 38, 10601066.
(27) Hoffman, B.; Cho, S. J.; Zheng, W.; Wyrick, S.; Nichols, D. E.; Mailman, R. B.; Tropsha, A. Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. J. Med. Chem. 1999, 42, 32173226.
(28) Cramer, R. D. I.; Patterson, D. E.; Bunce, J. D. ChemInform abstract: comparative molecular field analysis (CoMFA). Part 1. Effect of shape on binding of steroids to carrier proteins. J. Cheminform. 1988, 19.
(29) Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130–4146.
(30) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 2015, 12, 19–25.
(31) Schüttelkopf, A. W.; van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta. Crystallogr. D. Biol. Crystallogr. 2010, 60, 13551363.
(32) Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676.
(33) Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren, W. F. V.; Hermans, J. Interaction models for water in relation to protein hydration. Intermolecular Forces 1981, 14, 331342.
(34) Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory. Comput. 2008, 4, 116-122.
(35) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897.
(36) Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol. Inform. 2012, 31, 114122.
(37) Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 19511962.