One porous framework [Zn4(μ4-O)(μ4-4-pca)3]•2(DEF)•2(H2O) (1, 4-H2Pca = 4-pyrazolecarboxylic acid, DEF = N,N-diethylformamide) with MOF-5 type topology has been synthesized solvothermally. Significantly, this compound exhibits high capacity of C2 hydrocarbons. C2H2 capacity could compare with the highest value of the reported MOFs, far exceeding that of MOF-5, as well as the high selectivity adsorption of C2s over C1.
This work was supported financially by the National Natural Science Foundation of China (No. 21601080),and the Key Scientific Research Projects of Higher Education of He'nan Province (16A150016)
傅红如;鄢立兵;谢涛. 一个基于4-吡唑甲酸的类MOF-5框架的构筑及对小分子烷烃的吸附分离性能研究[J]. 结构化学, 2018, 37(5): 796-802.
FU Hong-Ru;YAN Li-Bin;XIE Tao . 4-Pyrazolecarboxylic Acid-based MOF-5 Analogs Framework with High Adsorption and Separation of Light Hydrocarbons. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(5): 796-802.
REFERENCES
(1) Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 2013, 340, 960–964.
(2) Sheng, D.; Dan, W. Y.; Luo, G. X.; Deng, M. A new coordination polymer built of 4-(5H-tetrazol)-benzoic acid and 3,5-dimethyl-1H,1,2,4-triazole showing a rarely observed (3,5)-connected lhh topology: synthesis, structure, CO2 adsorption and luminescent property. Chinese J. Struct. Chem. 2016, 2, 264–270.
(3) Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma. L. F. Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72– and nitroaromatic explosives. Cryst. Growth Des. 2017, 17, 6041–6048.
(4) Qiu, S. L.; Xue, M. S.; Zhu, G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140.
(5) Gu, C. S.; Hao, X.-M.; Zhang, Z. Y.; Ji, L. L.; Li, Y.; Song, W. D. Syntheses, structures and luminescent properties of the cadmium(II) complex with 3,3΄-thiodipropionic acid. Chinese J. Struct. Chem. 2017, 3, 478484..
(6) Lang, J. P.; Xu Q. F.; Yuan R. X.; Abrahams, B. F. [[WS4Cu4(4,4΄-bpy)4][WS4Cu4I4(4,4΄-bpy)2]] infinity – an unusual 3D porous coordination polymer formed from the preformed cluster [Et4N]4[WS4Cu4I6]. Angew. Chem., Int. Ed. 2004, 43, 4741–4745.
(7) Liu, D.; Lang, J. P.; Xu, Q. F.; Yuan, R. X.; Abrahams, B. F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation. J. Am. Chem. Soc. 2011, 133, 11042–11045.
(8) Wu, H. Y.; Li, H. H.; Zhen, Z. R. Synthesis, crystal structure and characterization of the host-guest type UOF. Chinese J. Struct. Chem. 2017, 4, 679–688.
(9) Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.
(10) Chen, Z.; Weseliński, Ł. J.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Jiang, H.; Bhatt, P. M.; Guillerm, V.; Dauzon, E.; Xue, D. X.; O’Keeffe, M.; Eddaoudi, M. Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6,12)-coordinated edge-transitive net. J. Am. Chem. Soc. 2017, 139, 3265–3274.
(11) He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. Chem. Eur. J. 2012, 18, 613–619.
(12) Xiang, S.; Zhou, W.; Zhang, Z.; Green, M. A.; Liu, Y.; Chen, B. Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature. Angew. Chem. Int. Ed. 2010, 49, 4615−4618.
(13) Nijem, N.; Wu, H. H.; Canepa, P.; Marti, A.; Balkus, Jr. K. J.; Thonhauser, T.; Li, J.; Chabal, Y. J. Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons. J. Am. Chem. Soc. 2012, 134, 15201–15204.
(14) Li, K. H.; Olson, D. H.; Seidel, J.; Emge, T. J.; Gong, H. W.; Zeng, H. P.; Li, J. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131, 10368–10369.
(15) Yao, S.; Sun, X.; Liu, B.; Krishna, R.; Li, G.; Huo, Q.; Liu, Y. Two heterovalent copper-organic frameworks with multiple secondary building units: high performance for gas adsorption and separation and I2 sorption and release. J. Mater. Chem. A 2016, 4, 15081–15087.
(16) Liu, B.; Yao, S.; Shi, C.; Li, G.; Huo, Q.; Liu, Y. Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal-organic frameworks. Chem. Commun. 2016, 52, 3223–3226.
(17) He, Y. P.; Tan, Y. X.; Zhang, J. Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons. Chem. Commun. 2013, 49, 11323–11325.
(18) He, Y. P.; Tan, Y. X.; Zhang, J. Gas sorption, second-order nonlinear optics and luminescence properties of a multifunctional srs-type MOF built by tris((4-carboxyl)phenylduryl)amine. Inorg. Chem. 2015, 54, 6653–6656.
(19) Nandasiria, M. I.; Jambovanea, S. R.; McGrailb, B. P.; Schaefc, H. T.; Nuneb, S. K. Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coordin. Chem. Rev. 2016, 311, 38–52.
(20) Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.
(21) Spek, A. L. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C 2015, 71, 3–8.
(22) Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7−13.
(23) Tu, B.; Pang, Q.; Wu, D.; Song, Y.; Weng, L.; Li, Q. Ordered vacancies and their chemistry in metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 14465-14471.
(24) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.
(25) He, Y.; Krishna, R.; Chen, B. L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 2012, 5, 9107–9120.
(26) Xiang, S.; Zhou, W.; Gallegos, J. M.; Liu, Y.; Chen, B. L. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. J. Am. Chem. Soc. 2009, 131, 12415–12419.
(27) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness, N. R.; Schröder, M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 2009, 131, 2159–2171.
(28) Das, M. C.; Xu, H.; Xiang, S. C.; Zhang, Z. J.; Arman, H. D.; Qian, G. D.; Chen, B. L. A new approach to construct a doubly interpenetrated microporous metal-organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules. Chem. Eur. J. 2011, 17, 7817–7822.
(29) Chen, J.; Loo, L. S.; Wang, K. An ideal absorbed solution theory (IAST) study of adsorption equilibria of binary mixtures of methane and ethane on a templated carbon. J. Chem. Eng. Data 2011, 56, 1209–1212.
(30) Das, M. C.; Xu, H.; Wang, Z.; Srinivas, G.; Zhou, W.; Yue, Y. F.; Nesterov, V. N.; Qian, G. D.; Chen, B. L. A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange. Chem. Commun. 2011, 47, 11715–11717.
(31) He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. L. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun. 2012, 48, 6493–6495.