Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study
吴铜伟;贾桂霄;王晓霞;李磊;安胜利
a (School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China)
b (The Inner Mongolia Autonomous Region Key Lab of Novel Functional Ceramics and Devices, Baotou, Inner Mongolia 014010, China)
Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study
a (School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China)
b (The Inner Mongolia Autonomous Region Key Lab of Novel Functional Ceramics and Devices, Baotou, Inner Mongolia 014010, China)
In this work, we perform DFT + U periodic calculations to study geometrical and electronic structures and oxygen vacancy formation energies of SmxCayCe1-x-yO2-δ systems (x = 0.0312, 0.0625, 0.125 and 0.250; y = 0.0312, 0.0625, 0.125 and 0.250; δ = 0.0312, 0.0625, 0.125, 0.250 and 0.50) with different oxygen vacancy and doping concentrations. The calculated results show that the V1-Sm3+-V2 structures where there is a position relationship of the face diagonal between V1 and V2 both nearest to Sm3+ have the lowest energy configurations. The study on electronic structures of the SmxCayCe1-x-yO2-δ systems finds that excess electrons arise from oxygen vacancies and are localized on f-level traps of their neighbor Ce, and Ca2+ and Sm3+ co-doping effectively restrains the reduction of Ce4+. In order to avoid the existence of Ce3+, x and y must be both larger than 0.0625 as δ = 0.125 or δ must be smaller than 0.125 as x = y = 0.0625. The Ce3+/Ce4+ change ratio k has an obvious monotonous increase with increasing the vacancy oxygen concentration. The introduction of Sm3+ decreases k. In addition, the doped Sm3+ can restrain the reduction of Ce4+ when the V1-Sm3+-V2 structure with a face diagonal position relationship in lower reduced atmosphere exists. It need be pointed out that the Sm0.25Ce0.75O1.5 system should be thought of as a Sm-doped Ce2O3 one.
In this work, we perform DFT + U periodic calculations to study geometrical and electronic structures and oxygen vacancy formation energies of SmxCayCe1-x-yO2-δ systems (x = 0.0312, 0.0625, 0.125 and 0.250; y = 0.0312, 0.0625, 0.125 and 0.250; δ = 0.0312, 0.0625, 0.125, 0.250 and 0.50) with different oxygen vacancy and doping concentrations. The calculated results show that the V1-Sm3+-V2 structures where there is a position relationship of the face diagonal between V1 and V2 both nearest to Sm3+ have the lowest energy configurations. The study on electronic structures of the SmxCayCe1-x-yO2-δ systems finds that excess electrons arise from oxygen vacancies and are localized on f-level traps of their neighbor Ce, and Ca2+ and Sm3+ co-doping effectively restrains the reduction of Ce4+. In order to avoid the existence of Ce3+, x and y must be both larger than 0.0625 as δ = 0.125 or δ must be smaller than 0.125 as x = y = 0.0625. The Ce3+/Ce4+ change ratio k has an obvious monotonous increase with increasing the vacancy oxygen concentration. The introduction of Sm3+ decreases k. In addition, the doped Sm3+ can restrain the reduction of Ce4+ when the V1-Sm3+-V2 structure with a face diagonal position relationship in lower reduced atmosphere exists. It need be pointed out that the Sm0.25Ce0.75O1.5 system should be thought of as a Sm-doped Ce2O3 one.
收稿日期: 2017-05-09
出版日期: 2018-02-07
基金资助:
Supported by the National Natural Science Foundation of China (No. 51474133) and Inner Mongolia Natural Science Foundation (No. 2016MS0513)
吴铜伟;贾桂霄;王晓霞;李磊;安胜利. Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study[J]. 结构化学, 2018, 37(2): 198-209.
WU Tong-Wei;JIA Gui-Xiao;WANG Xiao-Xia;LI Lei;AN Sheng-Li. Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(2): 198-209.
REFERENCES
(1)Brett, D. J. L.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37, 1568–1578.
(2)Ruiz, T. E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria. Solid State Ionics 1998, 113, 565–569.
(3)Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature (London) 2000, 404, 265–267.
(4)Molinari, M.; Parker, S. C.; Sayle, D. C.; Islam, M. S. Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria. J. Phys. Chem. C 2012, 116, 7073–7082.
(5)Kullgren, J.; Hermansson, K.; Castleton, C. Many competing ceria(110) oxygen vacancy structures: from small to large supercells. J. Chem. Phys. 2012, 137, 044705.
(6)Allen, J. P.; Watson, G. W. Occupation matrix control of d- and f-electron localisations using DFT + U. Phys. Chem. Chem. Phys. 2014, 16, 21016–21031.
(7)Steele, B. C. H. Appraisal of Ce1-yGdy O2-y/2 electrolytes for IT-SOFC operation at 500 ℃. Solid State Ionics 2000, 129, 95–110.
(8)Ismail, A.; Hooper, J.; Giorgi, J. B. A DFT + U study of defect association and oxygen migration in samarium-doped ceria. Phys. Chem. Chem. Phys. 2011, 13, 6116–6120.
(9)Suparna, B.; Parukuttyamma, S. D.; Dinesh, T. S. M.; Krishnakumar, M. Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium Co-doping. Adv. Funct. Mater. 2007, 17, 2847–2854.
(10)Wang, F. Y.; Cheng, S. Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 2004, 6, 743–746.
(11)Kim, N.; Kim, B. H.; Lee, D. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J. Power Sources 2000, 90, 139–143.
(12)Mori, T.; Yamamura, H. Preparation of an alkali-element or alkali-earth-element-doped CeO2-Sm2O3 system and its operation properties as the electrolyte in planar solid oxide fuel cells. J. Mater. Synth. Process. 1998, 6, 175–179.
(13)Van, H. J.; Horita, T.; Kawada, T.; Sakai, N.; Yokokawa, H. Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte. Solid State Ionics 1996, 86, 1255–1258.
(14)Yang, N.; Belianinov, A.; Strelcov, E. Effect of doping on surface reactivity and conduction mechanism in samarium-doped ceria thin films. ACS nano 2014, 8, 12494–12501.
(15)Ruiz-Trejo, E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Nanoparticles and nanoceramics of Y-doped CeO2. Solid State Ionics 1998, 113, 565–571.
(16)Yoshida, H.; Deguchi, H.; Miura, K. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ionics 2001,140, 191–199.
(17)Andersson, D. A.; Simak, S. I.; Skorodumova, N. V. Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. USA 2006, 103, 3518–3521.
(18)Yin, Y. H.; Li, S. Y.; Zhu, W.; Xia, C. R. Research on calcium-doped ceria used in intermediate-temperature SOFCs anodes. J. Chin. Rare Earth Soc. 2005, 03, 317–322.
(19)Mogensen, M.; Lindegaard, T.; Hansen, U. R. Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J. Electrochem. Soc. 1994, 141, 2122–2126.
(20)Wei, X.; Pan, W.; Cheng, L. Atomistic calculation of association energy in doped ceria. Solid State Ionics 2009, 180, 13–17.
(21)Frayret, C.; Villesuzanne, A.; Pouchard, M.; Matar, S. Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials. Int. J. Quantum Chem. 2005, 101, 826–839.
(22)Nakayama, M.; Martin, M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys. Chem. Chem. Phys. 2009, 11, 3241–3249.
(23)Grinter, D. C.; Ithnin, R.; Pang, C. L.; Thorton, G. Defect structure of ultrathin ceria films on Pt(111): atomic views from scanning tunneling microscopy. J. Phys. Chem. C 2010, 114, 17036–17041.
(24)Nolan, M.; Fearon, J. E.; Watson, G. W. Oxygen vacancy formation and migration in ceria. Solid State Ionics 2006, 177, 3069–3074.
(25)Jia, G. X.; Hao, W. X.; Pan, F.; Yang, J. C.; Zhang, Y. F. Electronic structures and oxygen ion migration energies of metal doped CeO2 systems: a DFT+U study. Acta Chim. Sinica 2013, 71, 1668–1675.
(26)Wu, T. W.; Jia, G. X.; Bao, J. X.; Liu, Y. Y.; An, S. L. Electronic structures and oxygen ion migrations of the CaO or BaO and Sm2O3 co-doped CeO2 System: A DFT + U Study. Chin. J. Inorg. Chem. 2016, 32, 1363–1369.
(27)Yahiro, H.; Eguchi, K.; Arai, H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid Stale Ionics 1989, 36, 71–75.
(28)Kumar, A.; Devi, P. S.; Maiti, H. S. A novel approach to develop dense lanthanum calcium chromite sintered ceramics with very high conductivity. Chem. Mater. 2004, 16, 5562–5563.
(29)Banerjee, S. P.; Devi, S. Sinter-active nanocrystalline CeO2 powder prepared by a mixed fuel process: effect of fuel on particle agglomeration. J. Nanoparticle Res. 2007, 9, 1097–1107.
(30)Murgida, G. E.; Ferrari, V.; Ganduglia, P. M. V. Ordering of oxygen vacancies and excess charge localization in bulk ceria: a DFT + U study. Phys. Rev. B 2014, 90, 115120/1–10.
(31)Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J. Oxygen vacancy clusters on ceria: decisive role of cerium f electrons. Phys. Rev. B 2009, 79, 075433/1–11.
(32)Graciani, J.; Antonio, M.; Márquez, J. J.; Plata, Y. O.; Norge, C.; Meyer, H. A.; Claudio, M.; Zicovich, W.; Javier, F. S. Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: the case of CeO2 and Ce2O3. J. Chem. Theory Comput. 2011, 7, 56–65.
(33)Hooper, J.; Ismail, A.; Giorgi, J. B. Computational insights into the nature of increased ionic conductivity in concentrated samarium-doped ceria: a genetic algorithm study. Phys. Chem. Chem. Phys. 2010, 12, 12969–12972.
(34)Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
(35)Delfina, G. P.; Alfredo, J.; Beatriz, I. Mn-doped CeO2: DFT + U study of a catalyst for oxidation reactions. J. Phys. Chem. C 2013, 117, 18063–18073.
(36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3867.
(37)Castleton, C. W.; Kullgren, J.; Hermansson, K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. J. Chem. Phys. 2007, 127, 244704/1–11.
(38)Loschen, C.; Carrasco, J.; Neyman, K. M. Illas, F. First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter. Phys. Rev. B 2007, 75, 035115/1–8.
(39)Nolan, M.; Parker, S. C.; Watson, G. W. Reduction of NO2 on ceria surfaces. J. Phys. Chem. B 2006, 110, 2256–2262.
(40)Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria. J. Phys. Chem. B 2006, 110, 16600–16606.
(41)Nolan, M.; Parker, S. C.; Watson, G. W. CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics. Phys. Chem. Chem. Phys. 2006, 8, 216–218.
(42)Scanlon, D. O.; Galea, N. M.; Morgan, B. J.; Watson, G. W. Reactivity on the (110) surface of ceria: a GGA+U study of surface reduction and the adsorption of CO and NO2. J. Phys. Chem. C 2009, 113, 11095–11103.
(43)Keating, P. R. L.; Scanlon, D. O.; Watson, G. W. Intrinsic ferromagnetism in CeO2: dispelling the myth of vacancy site localization mediated superexchange. J. Phys. Condens. Mat. 2009, 21, 405502/1–6.
(44)Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface. Phys. Rev. B 1998, 57, 1505–1517.
(45)Larson, P. W.; Lambrecht, R. L.; Chantis, A. N.; Schilfgaarde, V. M. Electronic structure of rare-earth nitrides using the LSDA+U approach: importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B 2007, 75, 045114/1–14.
(46)Dorado, B.; Jomard, G.; Freyss, M.; Bertolus, M. Stability of oxygen point defects in UO2 by first-principles DFT + U calculations: occupation matrix control and Jahn-Teller distortion. Phys. Rev. B 2010, 82, 035114/1–11.
(47)Feng, J.; Xiao, B.; Wan, C. L. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 2011, 59, 1742–1760.
(48)Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
(49)Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2006, 189, 30–36.
(50)Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.
(51)Silva, D. G. L. F.; Ganduglia, P. M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid functionals applied to rare-earth oxides: the example of ceria. Phys. Rev. B 2007, 75, 045121/1–10.
(52)Skorodumova, N. V.; Ahuja, R.; Simak, S. I.; Abrikosov, A.; Johansson, B.; Lundqvist, B. I. Electronic, bonding, and optical properties of CeO2 and Ce2 O3 from first principles. Phys. Rev. B 2001, 64, 115108/1–9.
(53)Andersson, D. A.; Simak, S. I.; Johansson, B.; Abrikosov, I. A.; Skorodumova, N. V. Modeling of CeO2, Ce2O3, and CeO2-x in the LDA+U
formalism.Phys. Rev. B 2007, 75, 035109/1–6.