Fabrication of WO3/TiO2 Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3 Decoration
王丹;潘晓阳;王广涛;易志国
a (CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
b (College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China)
Fabrication of WO3/TiO2 Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3 Decoration
WANG Dan;PAN Xiao-Yang;WANG Guang-Tao;YI Zhi-Guo
a (CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
b (College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China)
Efficient oxidation of gaseous small molecular hydrocarbons under mild conditions remains a significant but challenging task to date. Here we report that WO3 decoration can obviously improve the performance of TiO2 (P25) toward the photocatalytic oxidation of several small molecular hydrocarbons (C2H6, C3H8 and C2H4) under simulated solar light irradiation. Among the WO3/TiO2 heterostructures, the 10wt%WO3/TiO2 nanocomposite shows the best photoactivities, which can efficiently oxidize C2H6, C3H8 and C2H4 within 15, 9 and 8 minutes, respectively under simulated sunlight with a light intensity of 200 mW/cm2. By strong contrast, a decreased photoactivity of TiO2 by coupling with WO3 is observed when investigating the performance of photocatalysts toward the degradation of methylene blue (MB) in liquid phase. The opposing effect of WO3 decoration on the performance of TiO2 is thoroughly investigated, and it is found that the improved photoactivities for gaseous hydrocarbon degradation is ascribed to the enhanced oxygen adsorption, resulting from WO3 decoration rather than efficient charge separation within the WO3/TiO2 heterostructures.
Efficient oxidation of gaseous small molecular hydrocarbons under mild conditions remains a significant but challenging task to date. Here we report that WO3 decoration can obviously improve the performance of TiO2 (P25) toward the photocatalytic oxidation of several small molecular hydrocarbons (C2H6, C3H8 and C2H4) under simulated solar light irradiation. Among the WO3/TiO2 heterostructures, the 10wt%WO3/TiO2 nanocomposite shows the best photoactivities, which can efficiently oxidize C2H6, C3H8 and C2H4 within 15, 9 and 8 minutes, respectively under simulated sunlight with a light intensity of 200 mW/cm2. By strong contrast, a decreased photoactivity of TiO2 by coupling with WO3 is observed when investigating the performance of photocatalysts toward the degradation of methylene blue (MB) in liquid phase. The opposing effect of WO3 decoration on the performance of TiO2 is thoroughly investigated, and it is found that the improved photoactivities for gaseous hydrocarbon degradation is ascribed to the enhanced oxygen adsorption, resulting from WO3 decoration rather than efficient charge separation within the WO3/TiO2 heterostructures.
Supported by the National Key Project on Basic Research (No. 2013CB933203), the Strategic Priority Research Program of the Chinese Academy
of Sciences (No. XDB20000000), the National Natural Science Foundation of China (No. 21607153, 21373224 and 21577143), the Natural Science Foundation of Fujian Province (No. 2015J05044), and the Frontier Science Key Project of the Chinese Academy of Sciences (QYZDB-SSW-JSC027)
王丹;潘晓阳;王广涛;易志国. Fabrication of WO3/TiO2 Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3 Decoration[J]. 结构化学, 2018, 37(2): 230-241.
WANG Dan;PAN Xiao-Yang;WANG Guang-Tao;YI Zhi-Guo. Fabrication of WO3/TiO2 Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3 Decoration. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2018, 37(2): 230-241.
REFERENCES
(1)Hüsken, G.; Hunger, M.; Brouwers, H. J. H. Experimental study of photocatalytic concrete products for air purification. Build. Environ. 2009, 44, 24632474.
(2)Enterkin, J. A.; Setthapun, W.; Elam, J. W.; Christensen, S. T.; Rabuffetti, F. A.; Marks, L. D.; Stair, P. C.; Poeppelmeier, K. R.; Marshall, C. L. Propane oxidation over Pt/SrTiO3 nanocuboids. ACS Catal. 2011, 1, 629635.
(3)Heck, R. M.; Farrauto, R. J. Automobile exhaust catalysts. Appl. Catal. A 2001, 221, 443457.
(4)Li, Y.; Cai, Y.; Chen, X.; Pan, X.; Yang, M.; Yi, Z. Photocatalytic oxidation of small molecule hydrocarbons over Pt/TiO2 nanocatalysts. RSC Adv. 2016, 6, 27602767.
(5)Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Catalysts for combustion of methane and lower alkanes. Appl. Catal. A 2002, 234, 123.
(6)Schmale, J.; Shindell, D.; von Schneidemesser, E.; Chabay, I.; Lawrence, M. Air pollution: clean up our skies. Nature 2014, 515, 335337.
(7)Chen, X.; Huang, X.; Yi, Z. Enhanced ethylene photodegradation performance of g-C3N4–Ag3PO4 composites with direct Z-scheme configuration. Chem. A Eur. J. 2014, 20, 1759017596.
(8)Keller, N.; Ducamp, M. N.; Robert, D.; Keller, V. Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem. Rev. 2013, 113, 50295070.
(9)Long, P.; Zhang, Y.; Chen, X.; Yi, Z. Fabrication of YxBi1-xVO4 solid solutions for efficient C2H4 photodegradation. J. of Mater. Chem. A 2015, 3, 41634169.
(10)Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341357.
(11)Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. 2006, 9, 750760.
(12)Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2011, 112, 15551614.
(13)Zheng, Z.; Huang, B.; Meng, X.; Wang, J.; Wang, S.; Lou, Z.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y. Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem. Commun. 2013, 49, 868870.
(14)Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 1641416417.
(15)Pei, Z.; Ding, L.; Feng, W.; Weng, S.; Liu, P. Defect self-doped TiO2 for visible light activity and direct noble metal anchoring. Phys. Chem. Chem. Phys. 2014, 16, 2187621881.
(16)Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.; Wang, R. X.; Xu, A. W. Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J. of Mater. Chem. A 2014, 2, 44294437.
(17)Umezawa, N.; Ye, J. Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2. Phys. Chem. Chem. Phys. 2012, 14, 59245934.
(18)Li, K.; Gao, S.; Wang, Q.; Xu, H.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 90239030.
(19)Xiang, Q.; Yu, J.; Wang, W.; Jaroniec, M. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 2011, 47, 69066908.
(20)Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G. Q.; Cheng, H. M. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} Facets. J. Phys. Chem. C 2009, 113, 2178421788.
(21)Liu, S.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell. ACS Appl. Mater. Interfaces 2012, 4, 63786385.
(22)Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. Constructing ternary CdS-Graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C 2012, 116, 1802318031.
(23)Lou, Z.; Li, F.; Deng, J.; Wang, L.; Zhang, T. Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl. Mater. Interfaces 2013, 5, 1231012316.
(24)DeKrafft, K. E.; Wang, C.; Lin, W. Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 2012, 24, 20142018.
(25)Papp, J.; Soled, S.; Dwight, K.; Wold, A. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts. Chem. Mater. 1994, 6, 496500.
(26)Tada, H.; Kokubu, A.; Iwasaki, M.; Ito, S. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3. Langmuir. 2004, 20, 46654670.
(27)Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured tungsten oxide – properties, synthesis, and applications. Adv. Funct. Mater. 2011, 21, 21752196.
(28)Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J. Photoinduced electron storage in WO3/TiO2 nanohybrid material in the presence of oxygen and postirradiated reduction of heavy metal ions. J. Phys. Chem. C 2009, 113, 1316013165.
(29)Paramasivam, I.; Nah, Y. C.; Das, C.; Shrestha, N. K.; Schmuki, P. WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chem. Eur. J. 2010, 16, 89938997.
(30)Smith, W.; Zhao, Y. Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays. J. Phys. Chem. C 2008, 112, 1963519641.
(31)Ismail, A. A.; Abdelfattah, I.; Helal, A.; Al-Sayari, S. A.; Robben, L.; Bahnemann, D. W. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J. Hazard. Mater. 2016, 307, 4354.
(32)Dozzi, M. V.; Marzorati, S.; Longhi, M.; Coduri, M.; Artiglia, L.; Selli, E. Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Appl. Catal. B 2016, 186, 157165.
(33)Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chem. Mater. 2001, 13, 23492355.
(34)Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 61806187.
(35)Martín, C.; Solana, G.; Rives, V.; Marcì, G.; Palmisano, L.; Sclafani, A. Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catal. Lett. 1997, 49, 235243.
(36)Pan, J. H.; Lee, W. I. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem. Mater. 2006, 18, 847853.
(37)Brigden, C. T.; Poulston, S.; Twigg, M. V.; Walker, A. P.; Wilkins, A. J. J. Photo-oxidation of short-chain hydrocarbons over titania. Appl. Catal. B 2001, 32, 6371.
(38)Hägglund, C.; Kasemo, B.; Österlund, L. In situ reactivity and FTIR study of the wet and dry photooxidation of propane on anatase TiO2. J. Phys. Chem. B 2005, 109, 1088610895.
(39)Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Carbon dioxide capture by diamine-grafted SBA-15: a combined fourier transform infrared and mass spectrometry study. Ind. Eng. Chem. Res. 2005, 44, 37023708.
(40)van der Meulen, T.; Mattson, A.; Österlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: role of surface intermediates. J. Catal. 2007, 251, 131144.
(41)Pan, X.; Xu, Y. J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. J. Phys. Chem. C 2013, 117, 1799618005.