a (State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
b (China Tobacco, Shanghai 200240, China)
Synthesis, Structure and Characterization of a 3D Chiral Barium Carboxylate Metal-organic Framework Based on TADDOL Ligand
a (State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
b (China Tobacco, Shanghai 200240, China)
A novel alkaline earth-based chiral metal-organic framework 1 {[Ba1.5L(μ- OH2)2(DMF)2(H2O)]•DMF•1.5H2O}n was synthesized from C2-symmetric TADDOL-based ligand H4L and structurally characterized by single-crystal and powder X-ray diffraction, Fourier-transform infrared spectra (FTIR), solid-state circular dichroism (CD) and thermal gravimetric analysis (TGA). 1 crystallizes in monoclinic space group C2 with a = 43.5105(12), b = 9.4781(3), c = 15.5620(4) Å, β = 99.7770(10)º, V = 6324.5(3) Å3, Z = 2, Mr = 1434.18 g/mol, Dc = 1.506 g/cm3, F(000) = 2904, GOOF = 1.026, the final R = 0.0358 and wR = 0.0952 for 21747 observed reflections with I > 2σ(I). Each Ba3 cluster in 1 is linked by eight ligands and each ligand with one coordination-free carboxyl oxygen, O(5), is coordinated to four Ba3 clusters to generate a 3D network. In addition, the photoluminescence of 1 and H4L was also investigated.
This work was supported by NSFC-21371119, 21431004, 21401128, 21522104,and 21620102001), “973” Program (Grants 2014CB932102 and 2016YFA0203400),and the Shanghai “Eastern Scholar” Program SSTC-14YF1401300
邵枫;ANEES ABBAS;李子建;刘燕;刘百战;崔勇. 一个基于TADDOL配体的三维手性钡金属羧酸框架的合成、结构与表征[J]. 结构化学, 2017, 36(11): 1871-1877.
SHAO Feng;ANEES Abbas;LI Zi-Jian;LIU Yan;LIU Bai-Zhan;CUI Yong. Synthesis, Structure and Characterization of a 3D Chiral Barium Carboxylate Metal-organic Framework Based on TADDOL Ligand. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(11): 1871-1877.
REFERENCES
(1) Deria, P.; Gómez-Gualdrón, D. A.; Hod, I.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Framework-topology-dependent catalytic activity of zirconium based (porphinato) zinc(II) MOFs. J. Am. Chem. Soc. 2016, 138, 1444914457.
(2) Chen, Q.; Sun, J.; Li, P.; Hod, I.; Moghadam, P. Z.; Kean, Z. S.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Stoddart, J. F. A redox-active bistable molecular switch mounted inside a metal-organic framework. J. Am. Chem. Soc. 2016, 138, 14242−14245.
(3) Kundu, A.; Piccini, G.; Sillar, K.; Sauer, J. Ab initio prediction of adsorption isotherms for small molecules in metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 14047−14056.
(4) Lu, W.; Wei, Z.; Gu, Z.; Liu, T.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H. C. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 55615593.
(5) Liu, W.; Yin, X. Metal-organic frameworks for electrochemical applications. TrAC, Trends Anal. Chem. 2016, 75, 8696.
(6) Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Almeida Paz, F. A. Multifunctional metal-organic frameworks: from academia to industrial applications. Chem. Soc. Rev. 2015, 44, 67746803.
(7) Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic frameworks catalyzed C–C and C-heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 19221947.
(8) Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 59825993.
(9) Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 59946010.
(10) Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 60626096.
(11) Lin, Z.; Lu, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 58675895.
(12) Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 13431370.
(13) Hu, Z.; Deibert, B.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 58155840.
(14) Li, H.; Niu, Z.; Han, T.; Zhang, Z.; Shi, W.; Cheng, P. A microporous lanthanide metal-organic framework containing channels: synthesis, structure, gas adsorption and magnetic properties. Sci. China Chem. 2011, 54, 14231429.
(15) Zhang, X.; Yang, Q.; Zhao, J.; Hu, T.; Chang, Z.; Bu, X. Three interpenetrated copper(II) coordination polymers based on a V-shaped ligand: synthesis, structures, sorption and magnetic properties. Sci. China Chem. 2011, 54, 14461453.
(16) Wei, Z.; Yuan, D.; Zhao, X.; Sun, D.; Zhou, H. Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Sci. China Chem. 2013, 56, 418422.
(17) Liu, Y.; Xuan, W.; Cui, Y. Engineering homochiral metalorganic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 2010, 22, 41124135.
(18) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 11961231.
(19) Peluso, P.; Mamane, V.; Cossu, S. Homochiral metal-organic frameworks and their application in chromatography enantioseparations. J. Chromatogr. A 2014, 1363, 1126.
(20) Peng, Y.; Gong, T.; Zhang, K.; Lin, X.; Liu, Y.; Jiang, J.; Cui, Y. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat. Commun. 2014, 5, 19.
(21) Wanderley, M.; Wang, C.; Wu, C.; Lin, W. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 90509053.
(22) Ye. C.; Zhu, C.; Gong, T.; Shen, E.; Xuan, W.; Cui, Y.; Liu, B. A novel Cu-based metallosalan complex: synthesis, structure and chiral sensor study. Chin. J. Struct.Chem. 2013, 32, 10761082.
(23) Ma, L.; Falkowski, J.; Abney, C.; Lin, W. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2010, 2, 838846.
(24) Mo, K.; Yang, Y.; Cui, Y. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc. 2014, 136, 17461749.
(25) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y. Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J. Am. Chem. Soc. 2012, 134, 80588061.
(26) Xi, W.; Liu, Y.; Xia, Q.; Li, Z.; Cui, Y. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal-organic frameworks for asymmetric organic transformations. Chem. Eur. J. 2015, 21, 1258112586.
(27) Zhang, F.; Zhou, Y.; Dong, J.; Liu, B.; Zheng, S.; Cui, Y. Synthesis and crystal structure of a novel chiral 3D metal-organic framework based on an N-methyl substituted salan ligand. Chin. J. Struct. Chem. 2014, 33, 11541158.
(28) Foo, M.; Horike, S.; Duan, J.; Kitagawa, S. Tuning the dimensionality of inorganic connectivity in barium coordination polymers via biphenyl carboxylic acid ligands. Cryst. Growth Des. 2013, 13, 2965−2972.
(29) Yoon, T.; Jacobsen, E. Privileged chiral catalysts. Science. 2003, 299, 16911693.
(30) Pellissier, H. Use of TADDOLs and their derivatives in asymmetric synthesis. Tetrahedron 2008, 64, 1027910317.
(31) Seebach, D.; Beck, A. K.; Heckel, A. TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angew. Chem. Int. Ed. 2001, 40, 92138.
(32) Sheldrick, G. SHELXTL. Release 5.1 Software Reference Manual. Bruker AXS, Inc., Madison, Wisconsin, USA 1997.
(33) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339341.
(34) Liu, T.; Liu, Y.; Xuan, W.; Cui, Y. Chiral nanoscale metal-organic tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 2010, 49, 41214124.
(35) Taylor, J. M.; Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, K. H. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 2012, 134, 1433814340.
(36) Grancha, T.; Mon, M.; Pardo, E. Structural studies on a new family of chiral BioMOFs. Cryst. Growth Des. 2016, 16, 55715578.
(37) Yang, J.; Qin, Y.; Ye, R.; Zhang, X.; Yao, Y. Employing mixed-ligand strategy to construct a series of luminescent Cd(II) compounds with structural diversities. CrystEngComm. 2016, 18, 83098320.