Mechanistic, Energetic and Structural Aspects of the Adsorption of Carmustine on the Functionalized Carbon Nanotubes
KHORRAM Rabeeh;MORSALI Ali;RAISSI Heidar;HAKIMI Mohammad;BEYRAMABADI S. Ali
a (Chemistry Department, Payame Noor University, 19395-4697, Tehran, I. R. of IRAN)
b (Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran)
c (Chemistry Department, University of Birjand, Birjand, Iran)
Mechanistic, Energetic and Structural Aspects of the Adsorption of Carmustine on the Functionalized Carbon Nanotubes
KHORRAM Rabeeh;MORSALI Ali;RAISSI Heidar;HAKIMI Mohammad;BEYRAMABADI S. Ali
a (Chemistry Department, Payame Noor University, 19395-4697, Tehran, I. R. of IRAN)
b (Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran)
c (Chemistry Department, University of Birjand, Birjand, Iran)
Using density functional theory, noncovalent interactions and two mechanisms of covalent functionalization of drug carmustine with functionalized carbon nanotube (CNT) have been investigated. Quantum molecular descriptors of noncovalent configurations were studied. It was specified that binding of drug carmustine with functionalized CNT is thermodynamically suitable. NTCOOH and NTCOCl can bond to the NH group of carmustine through OH (COOH mechanism) and Cl (COCl mechanism) groups, respectively. The activation energies, activation enthalpies and activation Gibbs free energies of two pathways were calculated and compared with each other. The activation parameters related to COOH mechanism are higher than those related to COCl mechanism, and therefore COCl mechanism is suitable for covalent functionalization. COOH functionalized CNT (NTCOOH) has more binding energy than COCl functionalized CNT (NTCOCl) and can act as a favorable system for carmustine drug delivery within biological and chemical systems (noncovalent). These results could be generalized to other similar drugs.
Using density functional theory, noncovalent interactions and two mechanisms of covalent functionalization of drug carmustine with functionalized carbon nanotube (CNT) have been investigated. Quantum molecular descriptors of noncovalent configurations were studied. It was specified that binding of drug carmustine with functionalized CNT is thermodynamically suitable. NTCOOH and NTCOCl can bond to the NH group of carmustine through OH (COOH mechanism) and Cl (COCl mechanism) groups, respectively. The activation energies, activation enthalpies and activation Gibbs free energies of two pathways were calculated and compared with each other. The activation parameters related to COOH mechanism are higher than those related to COCl mechanism, and therefore COCl mechanism is suitable for covalent functionalization. COOH functionalized CNT (NTCOOH) has more binding energy than COCl functionalized CNT (NTCOCl) and can act as a favorable system for carmustine drug delivery within biological and chemical systems (noncovalent). These results could be generalized to other similar drugs.
KHORRAM Rabeeh;MORSALI Ali;RAISSI Heidar;HAKIMI Mohammad;BEYRAMABADI S. Ali. Mechanistic, Energetic and Structural Aspects of the Adsorption of Carmustine on the Functionalized Carbon Nanotubes[J]. 结构化学, 2017, 36(10): 1639-1646.
KHORRAM Rabeeh;MORSALI Ali;RAISSI Heidar;HAKIMI Mohammad;BEYRAMABADI S. Ali. Mechanistic, Energetic and Structural Aspects of the Adsorption of Carmustine on the Functionalized Carbon Nanotubes. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(10): 1639-1646.
REFERENCES
(1)Lai, P.; Chen, S.; Lin, M. F. Electronic properties of single-walled carbon nanotubes under electric and magnetic fields. Physica E 2008, 40, 20562058.
(2) Pimenta, M.; Gomes, A.; Fantini, C.; Cançado, L.; Araujo, P.; Maciel, I.; Santos, A.; Furtado, C.; Peressinotto, V.; Plentz, F. Optical studies of carbon nanotubes and nanographites. Physica E 2007, 37, 8892.
(3) De Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 2013, 339, 535539.
(4) Sun, S. J.; Fan, J. W.; Lin, C. Y. The electrical conduction variation in stained carbon nanotubes. Physica E 2012, 44, 803807.
(5) Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014, 26, 4067.
(6) Wang, H. T.; Wu, C. X.; Guan, L. H. Modulating the electrical structures of single-walled carbon nanotubes by filling with electron acceptor and the effect on their reactivity with aryl diazonium salts. Chin. J. Struct. Chem. 2013, 32, 19111915.
(7) Rungnim, C.; Arsawang, U.; Rungrotmongkol, T.; Hannongbua, S. Molecular dynamics properties of varying amounts of the anticancer drug gemcitabine inside an open-ended single-walled carbon nanotube. Chem. Phys. Lett. 2012, 550, 99103.
(8) Adeli, M.; Soleyman, R.; Beiranvand, Z.; Madani, F. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chem. Soc. Rev. 2013, 42, 52315256.
(9) Guo, L.; Wang, R.; Xu, H.; Liang, J. Why can the carbon nanotube tips increase resolution and quality of image in biological systems? Physica E: 2005, 27, 240244.
(10) Mundra, R. V.; Wu, X.; Sauer, J.; Dordick, J. S.; Kane, R. S. Nanotubes in biological applications. Curr. Opin. Biotechnol. 2014, 28, 2532.
(11) Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2007, 41, 6068.
(12) Allen, T. M.; Cullis, P. R. Drug delivery systems: entering the mainstream. Science 2004, 303, 18181822.
(13) Tomalia, D.; Reyna, L.; Svenson, S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 2007, 35, 617.
(14) Pennock, G. D.; Dalton, W. S.; Roeske, W. R.; Appleton, C. P.; Mosley, K.; Plezia, P.; Miller, T. P.; Salmon, S. E. Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J. Natl. Cancer Inst. 1991, 83, 105110.
(15) Lindley, C.; McCune, J. S.; Thomason, T. E.; Lauder, D.; Sauls, A.; Adkins, S.; Sawyer, W. T. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer Prac. 1999, 7, 5965.
(16) Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M. A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv. 2015, 12, 10891105.
(17) Rezvani, M.; Ganji, M. D.; Faghihnasiri, M. Encapsulation of lamivudine into single walled carbon nanotubes: a vdW-DF study. Physica E 2013, 52, 2733.
(18) Zhang, H.; Hou, L.; Jiao, X.; Ji, Y.; Zhu, X.; Li, H.; Chen, X.; Ren, J.; Xia, Y.; Zhang, Z. In vitro and in vivo evaluation of antitumor drug-loaded aptamer targeted single-walled carbon nanotubes system. Curr. Pharm. Biotechnol. 2014, 14, 11051117.
(19) Unnati, S.; Shah, R. Review: nano carrier systems for cancer therapy. Int. J. Pharm. Tech. 2011, 3, 927946.
(20) Wong, B. S.; Yoong, S. L.; Jagusiak, A.; Panczyk, T.; Ho, H. K.; Ang, W. H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 2013, 65, 19642015.
(21) Hamedani, S.; Moradi, S.; Aghaie, H. Adsorption of folic acid on the single-walled carbon nanotubes: AIM and NBO analysis via DFT. Chin. J. Struct. Chem. 2015, 34, 11611169.
(22) Lin, Y.; Allard, L. F.; Sun, Y. P. Protein-affinity of single-walled carbon nanotubes in water. J. Phys. Chem. B 2004, 108, 37603764.
(23) Zhang, Y. F.; Zhang, H. The first principles study of Li, Al and Ca doped zigzag (7, 0) single walled carbon nanotube. Chin. J. Struct. Chem. 2016, 35, 731739.
(24) Gad, E. A.; Al-Fahemi, J. H.; Khairou, K. S. Adsorption of n-alkyl derivatives on single walled carbon nanotubes (theoretical approach). J. Comput. Theor. Nanosci. 2014, 11, 404408.
(25) Li, R.; Tang, Y. J.; Zhang, H. Density functional theory study of MoO3 molecule encapsulated inside single-walled carbon nanotubes. Chin. J. Struct. Chem. 2012, 31, 16341640.
(26) Tawfik, S. A.; El-Sheikh, S.; Salem, N. First principles calculation of field emission from carbon nanotubes with nitrogen and boron doping. Physica E 2011, 44, 111114.
(27) Lei, H. W.; Zhang, H. A DFT investigation on the Co-adsorption of H2 and ions inside the carbon nanotube. Chin. J. Struct. Chem. 30, 1037-1043.
(28) Flahaut, E. Carbon Nanotubes for Biomedical Applications. Springer: Berlin 2011, p211219.
(29) Ajima, K.; Yudasaka, M.; Murakami, T.; Maigné, A.; Shiba, K.; Iijima, S. Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2005, 2, 475480.
(30) Westphal, M.; Hilt, D. C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P. C.; Whittle, I. R.; Jääskeläinen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro. Oncol. 2003, 5, 7988.
(31) Reithmeier, T.; Graf, E.; Piroth, T.; Trippel, M.; Pinsker, M. O.; Nikkhah, G. BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors. BMC Cancer 2010, 10, 308.
(32) Akilo, O. D.; Choonara, Y. E.; Strydom, A. M.; du Toit, L. C.; Kumar, P.; Modi, G.; Pillay, V. An in vitro evaluation of a carmustine-loaded nano-complex for potential magnetic-targeted intranasal delivery to the brain. Int. J. Pharm. 2016, 500, 196209.
(33) Rungnim, C.; Rungrotmongkol, T.; Hannongbua, S.; Okumura, H. Replica exchange molecular dynamics simulation of chitosan for drug delivery system based on carbon nanotube. J. Mol. Graphics Modell. 2013, 39, 183192.
(34) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 30983100.
(35) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 56485652.
(36) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785789.
(37) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. G09 Gaussian Inc. Wallingford, CT 2009.
(38) Hooman Vahidi, S.; Morsali, A.; Ali Beyramabadi, S. Quantum mechanical study on the mechanism and kinetics of the hydrolysis of organopalladium complex [Pd(CNN)P(OMe)3]+ in low acidity range. Comp. Theor. Chem. 2012, 994, 4146.
(39) Akbari, A.; Hoseinzade, F.; Morsali, A.; Ali Beyramabadi, S. Quantum mechanical study on the mechanism and kinetics of the cis to trans isomerization of [Pd (C6Cl2F3)I(PH3)2]. Inorg. Chim. Acta 2013, 394, 423429.
(40) Morsali, A.; Hoseinzade, F.; Akbari, A.; Beyramabadi, S. A.; Ghiasi, R. Theoretical study of solvent effects on the cis-to-trans isomerization of [Pd [Pd (C6Cl2F3)I(PH3)2] (?). J. Solution Chem. 2013, 42, 19021911.
(41) Mohseni, S.; Bakavoli, M.; Morsali, A. Theoretical and experimental studies on the regioselectivity of epoxide ring opening by nucleophiles in nitromethane without any catalyst: nucleophilic-chain attack mechanism. Prog. React. Kinet. Mec. 2014, 39, 89102.
(42) Beyramabadi, S. A.; Eshtiagh-Hosseini, H.; Housaindokht, M. R.; Morsali, A. Mechanism and kinetics of the Wacker process: a quantum mechanical approach. Organometallics 2007, 27, 7279.
(43) Gharib, A.; Morsali, A.; Beyramabadi, S.; Chegini, H.; Ardabili, M. N. Quantum mechanical study on the rate determining steps of the reaction between 2-aminopyrimidine with dichloro-[1-methyl-2-(naphthylazo) imidazole] palladium (II) complex. Prog. React. Kinet. Mec. 2014, 39, 354364.
(44) Morsali, A. Mechanism of the formation of palladium(II) maleate complex: a DFT approach. Int. J. Chem. Kinet. 2015, 47, 7381.
(45) Ardabili, M. N.; Morsali, A.; Beyramabadi, S. A.; Chegini, H.; Gharib, A. Quantum mechanical study of the alkoxide-independent pathway of reductive elimination of C–O from palladium (p-cyanophenyl) neopentoxide complex. Res. Chem. Intermed. 2015, 41, 53895398.
(46) Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix‐inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16, 14491458.
(47) Tomasi, J.; Persico, M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 20272094.
(48) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struc.: Theochem. 1999, 461, 121.
(49) Parr, R. G.; Szentpaly, L. V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 19221924.
(50) Lin, T.; Bajpai, V.; Ji, T.; Dai, L. Chemistry of carbon nanotubes. Aust. J. Chem. 2003, 56, 635651.