Structural Modulation of Two Luminescent Bismuth-organic Frameworks by the Mixed-ligand Synthetic Strategy
王二荣;黄剑豪;顾翔宇;程建文
(Key Laboratory of the Ministry of Education for Advanced Catalysis Materials,Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China)
Structural Modulation of Two Luminescent Bismuth-organic Frameworks by the Mixed-ligand Synthetic Strategy
WANG Er-Rong;HUANG Jian-Hao;GU Xiang-Yu;CHENG Jian-Wen
(Key Laboratory of the Ministry of Education for Advanced Catalysis Materials,Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China)
Hydrothermal reactions of Bi2O3 with pyridine-2,6-dicarboxylic acid (2,6-H2pdc) and trimesic acid (H3btc)/pyromellitic acid (H4pyr) lead to two bismuth-organic frameworks, namely, [Bi(2,6-pdc)(H2btc)(H2O)2]n (1) and [Bi2(2,6-pdc)2(H2pyr)(H2O)2]n (2). Compound 1 crystallizes in the space group P21/c. The dimeric {Bi2} units are linked by 2,6-pdc2− ligands to form 1D chains; Compound 2 exhibits a 2D layered structure with 44 network topology by using dimeric {Bi2} as secondary building units (SBUs). The chains and layers in 1 and 2 are further arranged into 3D supramolecular structures via hydrogen bonding interactions. The compounds emit blue luminescence. Furthermore, the PXRD, TGA, UV-visible and IR spectra were also studied. Compounds 1, 2 represent good examples of using mixed-ligand approach to construct diversity of luminescent bismuth-organic frameworks.
Hydrothermal reactions of Bi2O3 with pyridine-2,6-dicarboxylic acid (2,6-H2pdc) and trimesic acid (H3btc)/pyromellitic acid (H4pyr) lead to two bismuth-organic frameworks, namely, [Bi(2,6-pdc)(H2btc)(H2O)2]n (1) and [Bi2(2,6-pdc)2(H2pyr)(H2O)2]n (2). Compound 1 crystallizes in the space group P21/c. The dimeric {Bi2} units are linked by 2,6-pdc2− ligands to form 1D chains; Compound 2 exhibits a 2D layered structure with 44 network topology by using dimeric {Bi2} as secondary building units (SBUs). The chains and layers in 1 and 2 are further arranged into 3D supramolecular structures via hydrogen bonding interactions. The compounds emit blue luminescence. Furthermore, the PXRD, TGA, UV-visible and IR spectra were also studied. Compounds 1, 2 represent good examples of using mixed-ligand approach to construct diversity of luminescent bismuth-organic frameworks.
Supported by the NNSF of China (21471130) and the research fund for the doctoral program of higher education of China (Grant 201244200120007)
通讯作者:
jwcheng@zjnu.cn
E-mail: jwcheng@zjnu.cn
引用本文:
王二荣;黄剑豪;顾翔宇;程建文. Structural Modulation of Two Luminescent Bismuth-organic Frameworks by the Mixed-ligand Synthetic Strategy[J]. 结构化学, 2017, 36(7): 1100-1107.
WANG Er-Rong;HUANG Jian-Hao;GU Xiang-Yu;CHENG Jian-Wen. Structural Modulation of Two Luminescent Bismuth-organic Frameworks by the Mixed-ligand Synthetic Strategy. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(7): 1100-1107.
REFERENCES
(1).Halasyamani, P. S.; Poeppelmeier, K. R. Noncentrosymmetric oxides. Chem. Mater. 1998, 10, 2753–2769.
(2). Nguyen, S. D.; Yeon, J.; Kim, S. H.; Halasyamani, P. S. BiO(IO3): a new polar iodate that exhibits an aurivillius-type (Bi2O2)2+
layer and a large SHG response. J. Am. Chem. Soc. 2011, 133, 12422–12425.
(3). Cao, Z.; Yue, Y.; Yao, J.; Lin, Z.; He, R.; Hu, Z. Bi2(IO4)(IO3)3: a new potential infrared nonlinear optical material
containing [IO4]3− anion. Inorg. Chem. 2011, 50, 12818–12822.
(4). Sadler, P. J.; Li, H.; Sun, H. Coordination chemistry of metals in medicine: target sites for bismuth. Coord. Chem. Rev. 1999, 689–709.
(5). André, V.; Hardeman, A.; Halasz, I.; Stein, R. S.; Jackson, G. J.; Reid, D. G.; Duer, M. J.; Curfs, C.; Duarte, M. T.; Friščić, T. Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew. Chem., Int. Ed. 2011, 50, 7858–7861.
(6). Ould-Ely, T.; Thurston, J. H.; Whitmire, K. H. Heterobimetallic bismuth-transition metal coordination complexes as single-source molecular precursors for the formation of advanced oxide materials. C. R. Chim. 2005, 8, 1906–1921.
(7). (a) Mehring, M. From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev. 2007, 251, 974–1006;
(b) Cosham, S. D.; Hill, M. S.; Horley, G. A.; Johnson, A. L.; Jordan, L.; Molloy, K. C.; Stanton, D. C. Synthesis and materials chemistry of bismuth tris-(di-i-propylcarbamate): deposition of photoactive Bi2O3 thin films. Inorg. Chem. 2014, 53, 503–511.
(8). Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.
(9). O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.
(10). Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.
(11). (a) Wibowo, A. C.; Vaughn, S. A.; Smith, M. D.; zur Loye, H. C. Novel bismuth and lead coordination polymers synthesized with pyridine-2,5-dicarboxylates: two single component “white” light emitting phosphors. Inorg. Chem. 2010, 49, 11001–11008;
(b) Wibowo, A. C.; Smith, M. D.; zur Loye, H. C. Structural diversity of metal-organic materials containing bismuth(III) and pyridine-2,5-dicarboxylate. Cryst. Growth Des. 2011, 11, 4449–4457;
(c) Wibowo, A. C.; Smith, M. D.; zur Loye, H. C. A new Kagomé lattice coordination polymer based on bismuth and pyridine-2,5-dicarboxylate: structure and photoluminescent properties. Chem. Commun. 2011, 47, 7371–7373;
(d) Wibowo, A. C.; Smith, M. D.; zur Loye, H. C. New 3D bismuth-oxo coordination polymers containing terephthalate-based ligands: observation of Bi2O2-layer and Bi4O3-chain motifs. CrystEngComm. 2011, 13, 426–429.
(e) Wibowo, A. C.; Smith, M. D.; Yeon, J.; Halasyamani, P. S.; zur Loye, H. C. Novel 3D bismuth-based coordination polymers: synthesis, structure, and second harmonic generation properties. J. Solid State Chem. 2012, 195, 94–100.
(12). (a) Thirumurugan, A.; Tan, J. C.; Cheetham, A. K. Heterometallic inorganic-organic frameworks of sodium-bismuth benzenedicarboxylates. Cryst. Growth Des. 2010, 10, 1736–1741;
(b) Thirumurugan, A.; Cheetham, A. K. Anionic metal-organic frameworks of bismuth benzenedicarboxylates: synthesis, structure and ligand-sensitized photoluminescence. Eur. J. Inorg. Chem. 2010, 3823–3828;
(c) Thirumurugan, A.; Li, W.; Cheetham, A. K. Bismuth 2,6-pyridinedicarboxylates: assembly of molecular units into coordination polymers, CO2 sorption and photoluminescence. Dalton Trans. 2012, 41, 4126–4134.
(13). (a) Anjaneyulu, O.; Prasad, T. K.; Swamy, K. C. K. Coordinatively polymeric and monomeric bismuth(III) complexes with pyridine carboxylic acids. Dalton Trans. 2010, 39, 1935–1940;
(b) Chandrasekhar, V.; Metre, R. K. Bismuth-ferrocene carboxylates: synthesis and structure. Dalton Trans. 2012, 41, 11684–11691;
(c) Zhang, X.; Tian, H.; Yan, G.; Su, Y.; Feng, Y.; Cheng, J. Incorporating different secondary building units of {Bi2}, {Bi8} and {Bi10} to construct diversity of luminescent bismuth-organic frameworks. Dalton Trans. 2013, 42, 1088–1093.
(14). (a) Feyand, M.; Mugnaioli, E.; Vermoortele, F.; Bueken, B.; Dieterich, J. M.; Reimer, T.; Kolb, U.; de Vos, D.; Stock, N. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew. Chem. Int. Ed. 2012, 51, 10373–10376;
(b) Feyand, M.; Köppen, M.; Friedrichs, G.; Stock, N. Bismuth tri- and tetraarylcarboxylates: crystal structures, in situ X-ray diffraction, intermediates and luminescence. Chem. Eur. J. 2013, 19, 12537–12546.
(15). (a) Sushrutha, S. R.; Natarajan, S. Bismuth carboxylates with brucite- and fluorite-related structures: synthesis structure and properties. Cryst. Growth Des. 2013, 13, 1743–1751.
(b) Zhang, X.; Wang, D.; Su, Y.; Tian, H.; Lin, J.; Feng, Y.; Cheng, J. Luminescent 2D bismuth-cadmium-organic frameworks with tunable and white light emission by doping different lanthanide ions. Dalton Trans. 2013, 42, 10384–10387;
(c) Tröbs, L.; Wilke, M.; Szczerba, W.; Reinholz, U.; Emmerling, F. Mechanochemical synthesis and characterisation of two new bismuth metal organic frameworks. CrystEngComm. 2014, 16, 5560–5565;
(d) Stavila, V.; Davidovich, R. L.; Gulea, A.; Whitmire, K. H. Bismuth(III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: chemistry and structure. Coord. Chem. Rev. 2006, 250, 2782–2810;
(e) Shi, F.; Silva, A. R.; Bian, L. Bi-Mn mixed metal organic oxide: a novel 3d-6p mixed metal coordination network. J. Solid State Chem. 2015, 225, 45–52.
(16). (a) Haldar, R.; Maji, T. K. Metal-organic frameworks (MOFs) based on mixed linker systems: structural diversities towards functional materials. CrystEngComm. 2013, 15, 9276–9295;
(b) Bunck, D. N.; Dichtel, W. R. Mixed linker strategies for organic framework functionalization. Chem. Eur. J. 2013, 19, 818–827.
(17). (a) Han, L.; Gong, Y.; Lin, Z.; Lü, J.; Cao, R. Entangled coordination polymers with mixed N- and O-donor organic linkers: a case of module-matching priority. Dalton Trans. 2012, 41, 4146–4152;
(b) Reinsch, H.; Waitschat, S.; Stock, N. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Trans. 2013, 42, 4840–4847.
(18). (a) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997;
(b) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany 1997.
(19). (a) Liu, B.; Fan, L.; Liu , Y.; Yang, J.; Ma, J. Syntheses and structures of Cd(II) and Co(II) compounds of 4-[(3-pyridyl)methylamino]benzoate anion. J. Coord. Chem. 2011, 64, 413–423;
(b) Zhang, L.; Ma, J.; Yang, J.; Pang, Y.; Ma, J. Series of 2D and 3D coordination polymers based on 1,2,3,4-benzenetetracarboxylate and N-donor ligands: synthesis, topological structures, and photoluminescent properties. Inorg. Chem. 2010, 49, 1535–1550.