a (State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China)
b (Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory
of Microstructures, Nanjing University, Nanjing 210093, China)
Construction and the Second-order Nonlinear Optics of a New Chiral Coordination Network Based on Two Types of Homo-chiral Helices
a (State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China)
b (Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory
of Microstructures, Nanjing University, Nanjing 210093, China)
Abstract:A new 2D chiral cadmium coordination network [Cd(TCBA)2]∙2EtOH (1) was prepared by the reaction of achiral angular asymmetric bridging ligand 2-((3,5-dimethyl- 4H-1,2,4-triazol-4-yl)-carbamoyl)-benzoic acid (TCBA) with cadmium acetate, which was structurally characterized by IR, elemental analysis, thermogravimetric analysis and single-crystal X-ray diffraction. Complex 1 crystallizes in the chiral space group P21 and features a 2D chiral network consisting of two types of homo-chiral helices, which are further extended into a 3D chiral framework along the a-axis via hydrogen bonds. Moreover, powder second-order nonlinear optical (NLO) measurements reveal complex 1 has a modest second-harmonic-generation (SHG) efficiency at room temperature.
黄永清;王阳;郭秉林;刘承龙;李宗阁;赵越. 基于两种同手性螺旋链的一种新型手性配位网络的构建与二阶非线性光学性质[J]. 结构化学, 2017, 36(7): 1172-1178.
HUANG Yong-Qing;WANG Yang;GUO Bing-Lin;LIU Cheng-Long;LI Zong-Ge;ZHAO Yue. Construction and the Second-order Nonlinear Optics of a New Chiral Coordination Network Based on Two Types of Homo-chiral Helices. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(7): 1172-1178.
REFERENCES
(1)Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Helicates as versatile supramolecular complexes. Chem. Rev. 1997, 97, 20052062.
(2) Xu, Z. X.; Fu, H. R.; Wu, X.; Kang, Y.; Zhang, J. Size-dependent enantioselective adsorption of racemic molecules through homochiral metal-organic frameworks embedding helicity. Chem. Eur. J. 2015, 21, 1023610240.
(3) Li, W.; Jia, H. P.; Ju, Z. F.; Zhang, J. A novel chiral Cd(Ⅱ) coordination polymer based on achiral unsymmetrical 3-amino-1,2,4-triazole with an unprecedented μ4-bridging mode. Cryst. Growth Des. 2006, 6, 21362140.
(4) Bonnefoy, J.; Legrand, A.; Quadrelli, E. A.; Canivet, J.; Farrusseng, D. Enantiopure peptide-functionalized metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 9409‒9416.
(5) He, Y. P.; Tan, Y. X.; Zhang, J. Gas sorption, second-order nonlinear optics, and luminescence properties of a multifunctional srs-type metal-organic framework built by tris(4-carboxylphenylduryl)amine. Inorg. Chem. 2015, 54, 6653‒6656.
(6) Chen, Z.; Qin, S.; Liu, D.; Shen, Y.; Liang, F. A series of coordination polymers exhibiting dual chiral features and diverse interhelical interactions. Cryst. Growth Des. 2013, 13, 3389‒3395.
(7) Su, Z.; Lv, G. C.; Fan, J.; Liu, G. X.; Sun, W. Y. Homochiral ferroelectric three-dimensional cadmium(II) frameworks from racemic camphoric acid and 3,5-di(imidazol-1-yl)benzoic acid. Inorg. Chem. Commun. 2012, 15, 317‒320.
(8) Ma, N.; Song, H. H.; Yu, H. T. Syntheses, crystal structures and properties of two homochiral Co(Ⅱ) complexes based on N-acetyl-L-tyrosine. Chin. J. Inorg. Chem. 2016, 32, 1078‒1088.
(9) Gu, L.; Ren, D. H.; Liu, Z. M.; Sun, X. L.; Qiu, D.; Gu, Z. G.; Li, Z. J. Two homochiral spin-crossover iron(Ⅱ) complexes based on bidentate imidazole Schiff base ligands. Chin. J. Inorg. Chem. 2015, 31, 1357‒1364.
(10) Pérez-García, L.; Amabilino, D. B. Spontaneous resolution under supramolecular control. Chem. Soc. Rev. 2002, 31, 342‒356.
(11) Han, L.; Hong, M. Recent advances in the design and construction of helical coordination polymers. Inorg. Chem. Commun. 2005, 8, 406‒419.
(12) Biradha, K.; Seward, C.; Zaworotko, M. J. Helical coordination polymers with large chiral cavities. Angew. Chem. Int. Ed. 1999, 38, 492‒495.
(13) Ezuhara, T.; Endo, K.; Aoyama, Y. Helical coordination polymers from achiral components in crystals. Homochiral crystallization, homochiral helix winding in the solid state, and chirality control by seeding. J. Am. Chem. Soc. 1999, 121, 3279‒3283.
(14) Caradoc-Davies, P. L.; Hanton, L. R. Formation of a single-stranded silver(I)helical-coordination polymer containing π-stacked planar chiralN4S2 ligands. Chem. Commun. 2001, 1098‒1099.
(15) Jiang, L.; Feng, X. L.; Su, C. Y.; Chen, X. M.; Lu, T. B. Interchain-solvent-induced chirality change of 1D helical chains: from achiral to chiral crystallization. Inorg. Chem. 2007, 46, 2637‒2644.
(16) Huang, Y. Q.; Zhao, W.; Chen, J. G.; Zhu, Z. J.; Zhang, H. A helical silver(I) complex with 2-pyrimidylthioacetate: structure variation through partial change of ligand. Z. Anorg. Allg. Chem. 2012, 679‒682.
(17) Huang, Y. Q.; Cheng, H. D.; Chen, H. Y.; Wan, Y.; Liu, C. L.; Zhao, Y.; Xiao, X. F.; Chen, L. H. Structural diversity in coordination polymers with a semirigid Lewis acidity ligand: structures and properties . CrystEngComm. 2015, 17, 5690‒5701.
(18) Herbert, R. M.; Garrison, J. A. Studies on the formation of 4-aminotriazole derivatives from acyl hydrazides. J. Org. Chem. 1953, 18, 872‒877.
(19) Sanz, D.; Pérez-Torralba, M.; Alarcón, S. H.; Claramunt, R. M.; Foces-Foces, C.; Elguero, J. Tautomerism in the solid state and in solution of a series of 6-aminofulvene-1-aldimines. J. Org. Chem. 2002, 67, 1462‒1471.
(20) Higashi, T. ABSCOR, Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan 1995.
(21) Agilent. CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England 2011.
(22) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.
(23) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. University of Göttingen, Germany 1997.
(24) Sheldrick, G. M. SHELXTL, Version 6.10, Bruker AXS Inc., Madison, Wisconsin, USA 2000.
(25) Pan, J.; Jiang, F. L.; Yuan, D. Q.; Shan, X. C.; Wu, M. Y.; Zhou, K.; Gai, Y. L.; Li, X. J.; Hong, M. C. The 3D porous metal-organic frameworks based on bis(pyrazinyl)-trizole: structures, photoluminescence and gas adsorption properties. CrystEngComm. 2013, 15, 5673‒5680.