A new copper iodide/organic hybrid incorporated with methyl viologen, [(MV)(Cu2I4)•H2O]n (1, MV = methyl viologen), has been solvothermally synthesized and struc- turally determined by X-ray diffraction method. 1 crystallizes in tetragonal system, space group P42212 with Mr = 838.95, a = 12.4721(18), c = 6.5892(13 Å, V = 1025.0(3) Å3, Z = 2, Dc = 2.7125 g/cm3, F(000) = 756, μ(MoKα) = 8.097 mm–1, the final R = 0.0273 and wR = 0.0665 for 1062 observed reflections with I > 2σ(I). In 1, the (Cu2I4)n2n- chain was constructed from edge-sharing of distorted CuI4 tetrahedra. Its absorption spectrum and photoluminescence were investigated, and energy band gap of 1.76 eV indicates its semiconductor nature. Interestingly, 1 exhibits photocatalytic activity for the degradation of rhodamine B.
Abstract:A new copper iodide/organic hybrid incorporated with methyl viologen, [(MV)(Cu2I4)•H2O]n (1, MV = methyl viologen), has been solvothermally synthesized and struc- turally determined by X-ray diffraction method. 1 crystallizes in tetragonal system, space group P42212 with Mr = 838.95, a = 12.4721(18), c = 6.5892(13 Å, V = 1025.0(3) Å3, Z = 2, Dc = 2.7125 g/cm3, F(000) = 756, μ(MoKα) = 8.097 mm–1, the final R = 0.0273 and wR = 0.0665 for 1062 observed reflections with I > 2σ(I). In 1, the (Cu2I4)n2n- chain was constructed from edge-sharing of distorted CuI4 tetrahedra. Its absorption spectrum and photoluminescence were investigated, and energy band gap of 1.76 eV indicates its semiconductor nature. Interestingly, 1 exhibits photocatalytic activity for the degradation of rhodamine B.
李小康 蒋阳琴. A New Iodocuprate/methyl Viologen-based Hybird: Structure, Properties and Photocatalytic Activity for the Degradation of Organic Dye[J]. 结构化学, 2017, 36(6): 1020-1026.
LI Xiao-Kang;JIANG Yang-Qin. A New Iodocuprate/methyl Viologen-based Hybird: Structure, Properties and Photocatalytic Activity for the Degradation of Organic Dye. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(6): 1020-1026.
REFERENCES
(1)Yu, Z. T.; Liao, Z. L.; Jiang, Y. S.; Li, G. H.; Chen, J. S. Water-insoluble Ag–U–organic assemblies with photocatalytic activity. Chem. Eur. J. 2005, 11, 2642–2650.
(2) Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem., Int. Ed. 2003, 42, 4908–4911.
(3) Kim, K. G.; Hwang, D. W.; Lee, J. S. An undoped, single-phase oxide photocatalyst working under visible light. J. Am. Chem. Soc. 2004, 126, 8912–8913.
(4) Li, H. H.; Zeng, X. H.; Wu, H. Y.; Jie, X.; Zheng, S. T.; Chen, Z. R. Incorporating guest molecules into honeycomb structures constructed from uranium(VI)-polycarboxylates: structural diversities and photocatalytic activities for the degradation of organic dye. Cryst. Growth & Design 2015, 15, 10–13.
(5) Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.
(6) Wen, T.; Zhang, D. X.; Zhang, J. Two-dimensional copper(I) coordination polymer materials as photocatalysts for the degradation of organic dyes. Inorg. Chem. 2013, 52, 12−14.
(7) Li, S. L.; Zhang, X. M. Cu3I7 trimer and Cu4I8 tetramer based cuprous iodide polymorphs for efficient photocatalysis and luminescent sensing: unveiling possible hierarchical assembly mechanism. Inorg. Chem. 2014, 53, 8376−8383.
(8) Liu, Z. W.; Qayyum, M. F.; Wu, C.; Whited, M. T.; Djurovich, P. I.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Thompson, M. E. A codeposition route to CuI−pyridine coordination complexes for organic light-emitting diodes. J. Am. Chem. Soc. 2011, 133, 3700−3703.
(9) Lee, J. Y.; Kim, H. J.; Jung, J. H.; Sim, W.; Lee, S. S. Networking of calixcrowns: from heteronuclear endo/exocyclic coordination polymers to a photoluminescence switch. J. Am. Chem. Soc. 2008, 130, 13838−13839.
(10) Bi, M. H.; Li, G. H.; Hua, J.; Liu, Y. L.; Liu, X. M.; Hu, Y. W.; Shi, Z.; Feng, S. H. Two isomers with FSC topology constructed from Cu6I6(DABCO)4 and Cu8I8(DABCO)6 building blocks. Cryst. Growth & Design 2007, 7, 2066−2070.
(11) Huang, S.; Xie, R. G. Preparation Manual of Organic Synthesis Reagent, Sichuan University Press 1988.
(12) Perew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phy. Rev. Lett. 1996, 77, 3865−3868.
(13) Segall, M.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Refson, K.; Payne, M. Materials Studio CASTEP version 4.1 2006.
(14) Sheldrick, G. M. SHELXS97 and SHELXL97. University of Göttingen, Germany 1997.
(15) Goher, M. A. S.; Al-Salem, N. A.; Mak, T. C. W. Synthesis, spectral and crystal structures of two new copper(I) complexes of di-2-pyridyl ketone (DPK) containing uncoordinated N-protonated ligand; [(DPK)H][CuX2] (X = I and NCS). Polyhedron 2000, 19, 1465–1470.
(16) Rath, N. P.; Holt, E. M. Synthesis and structural characterization of CuI2–. J. Chem. Soc. Chem. Commun. 1986, 311–312.
(17) Rath, N. P.; Holt, E. M.; Tanimura, K. Fluorescent copper(I) complexes: correlation of structural and emission characteristics of [{CuI(quin)2}2] and [Cu4I4(quin)4] (quin = quinoline). J. Chem. Soc. Dalton Trans. 1986, 2303–2310.
(18) Rath, N. P.; Maxwell, J. L.; Holt, E. M. Fluorescent copper(I) complexes: an X-ray diffraction study of complexes of copper(I) iodide and pyridine derivatives of rhombic, [Cu2I2(3-Me-py)4], and polymeric structure, [{CuI(2-me-py)}∞] and [{CuI(2,4-Me2-py)}∞]. J. Chem. Soc. Dalton Trans. 1986, 2449–2453.
(19) Che, C. M.; Mao, Z.; Miskowski, V. M.; Tse, M. C.; Chan, C. K.; Cheung, K. K.; Phillips, D. L.; Leung, K. H. Cuprophilicity: spectroscopic and structural evidence for Cu-Cu bonding interactions in luminescent dinuclear copper(I) complexes with bridging diphosphane ligands. Angew. Chem., Int. Ed. 2000, 39, 4084−4088.
(20) Sun, X. L.; Zhu, Q. Y.; Mu, W. Q.; Qian, L. W.; Yu, L.; Wu, J.; Bian, G. Q.; Dai, J. Ion pair charge-transfer thiogermanate salts [MV]2Ge4S10•xSol: solvent induced crystal transformation and photocurrent responsive properties. Dalton Trans. 2014, 43,12582–12589.
(21) Li, H. H.; Wang, P.; Chao, X. H.; Lin, C. C.; Gong, A. W.; Chen, Z. R. Two new methyl viologen halocadmium charge-transfer salts with isostructures: visible-light excited photoluminescences, thermochromisms and theoretical studies. J. Clust. Sci. 2015, 26, 851–862.
(22) Wendl, W. W.; Hecht, H. G. Reflectance Spectroscopy. Interscience Publishers: New York 1966.
(23) Chen, W. T.; Liu, D. S.; Ying, S. M.; Chen, H. L.; Xu, Y. P. ZnCl3(4-methyl-4,4΄-bipyridinium) with 4-methyl-4,4΄-bipyridinium generated in situ: synthesis, structure and photoluminescence. Inorg. Chem. Commun. 2008, 11, 1212−1214.
(24) Zhang, Y.; Wu, T.; Liu, R.; Dou, T.; Bu, X. H.; Feng, P. Y. Three-dimensional photoluminescent frameworks constructed from size-tunable CuI clusters. Cryst. Growth Des. 2010, 10, 2047−2049.
(25) Yang, J.; Dolg, M. First-principles electronic structure study of the monoclinic crystal bismuth triborate BiB3O6. J. Phys. Chem. B 2006, 110, 19254−19263.