a (Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China)
b (Department of Chemistry, Jilin Normal University, Siping 136000, China)
A New One-dimensional Coordination Polymer Based on 3,5-Dinitro-salicylic Acid: Synthesis, Crystal Structure, Luminescent Property and Theoretical Calculation
KONG Zhi-Guo;LIU Dong-Xue;LI Rui;JIANG Yue;WANG Li-Juan;HU Bo
a (Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China)
b (Department of Chemistry, Jilin Normal University, Siping 136000, China)
A new one-dimensional Mg(II) coordination polymer, [Mg(L)(phen)(H2O)] (1), has been hydrothermally synthesized by using 3,5-dinitro-salicylic acid (H2L) and 1,10-phenanthroline (phen). It crystallizes in monoclinic, space group C2/c with a = 33.038(7), b = 6.6481(13), c = 22.750(5) Å, β = 126.99(3)o, V = 3991.1(14) Å3, Z = 8, C19H12MgN4O8, Mr = 448.64, Dc = 1.493 g/cm3, F(000) = 1840, μ(MoKa) = 0.146 mm-1, R = 0.0559 and wR = 0.0975. In 1, each L anion bridges two Mg(II) atoms to give one-dimensional zigzag chains with the Mg•••Mg separation of 5.34 Å, which are extended by π-π stacking interactions between 1,10-phenanthroline ligands into a two-dimensional supramolecular layer. Moreover, the O–H•••O hydrogen-bonding interactions further stabilize the layer structure of 1. The luminescent property was also studied for 1 in solid state at room temperature. In addition, natural bond orbital (NBO) analysis was performed by the B3LYP/LANL2DZ method in Gaussian 09 Program. The calculation results show obvious covalent interaction between the coordinated atoms and Mg(II) ion.
孔治国;刘东雪;李芮;江月;王丽娟;胡波. 基于3,5-二硝基水杨酸的一维配位聚合物的合成、晶体结构、荧光性能及理论计算[J]. 结构化学, 2017, 36(5): 841-847.
KONG Zhi-Guo;LIU Dong-Xue;LI Rui;JIANG Yue;WANG Li-Juan;HU Bo. A New One-dimensional Coordination Polymer Based on 3,5-Dinitro-salicylic Acid: Synthesis, Crystal Structure, Luminescent Property and Theoretical Calculation. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(5): 841-847.
REFERENCES
(1)Ye, J. W.; Wang, X. X.; Bogale, R. F.; Zhao, L. M.; Cheng, H.; Gong, W. T.; Zhao, J. Z.; Ning, G. L. A fluorescent zinc-pamoate coordination polymer for highly selective sensing of 2,4,6-trinitrophenol and Cu2+ ion. Sensor Actuat. B-Chem. 2015, 210, 566–573.
(2) Sang, R. L.; Xu, L. Construction of a series of 1D and 2D inorganic-organic hybrid coordination polymers based on 1,1΄-bis(propionic acid)-2,2΄-biimidazole. Eur. J. Inorg. Chem. 2010, 2010, 4962–4968.
(3) Chen, Z.; Sun, Y. W.; Zhang, L. L.; Sun, D.; Liu, F. L.; Meng, Q. G.; Wang, R. M.; Sun, D. F. A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. Chem. Commun. 2013, 49, 11557–11559.
(4) Ghosh, A. K.; Jana, A. D.; Ghoshal, D.; Mostafa, G.; Ray Chaudhuri, N. Toward the recognition of enolates/dicarboxylates: syntheses and X-ray crystal structures of supramolecular architectures of Zn(II)/Cd(II) using 2,2′-biimidazole. Cryst. Growth Des. 2006, 6, 701–707.
(5) Lin, Z. J.; Han, L. W.; Wu, D. S.; Huang, Y. B.; Cao, R. Structure versatility of coordination polymers constructed from a semirigid tetracarboxylate ligand: syntheses, structures, and photoluminescent properties. Cryst. Growth Des. 2013, 13, 255−263.
(6) Ye, B. H.; Ding, B. B.; Weng, Y. Q.; Chen, X. M. Multidimensional networks constructed with isomeric benzenedicarboxylates and 2,2΄-biimidazole based on mono-, bi-, and trinuclear units. Cryst. Growth Des. 2005, 5, 801–806.
(7) Zhou, J. M.; Shi, W.; Xu, N.; Cheng, P. Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal-organic frameworks. Inorg. Chem. 2013, 52, 8082−8090.
(8) Dunne, S. J.; Surrmers, L. A.; Nagy-Felsobuki, E. I. Von. Conformational and UV photoelectron spectroscopy analysis of the chalcogenobispyridines. Coord. Chem. Rev. 1997, 165, 1–92.
(9) O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.
(10) Wan, C. Q.; Li, A. M.; Al-Thabaiti, S. A.; Mak, T. C. W. Group 12 metal complexes of semirigid 2,6-pyridinediylbis(3-pyridinyl)methanone: role of counteranions and solvent in product formation. Cryst. Growth Des. 2013, 13, 1926–1936.
(11) Zhou, J. M.; Shi, W.; Li, H. M.; Li, H.; Cheng, P. Experimental studies and mechanism analysis of high-sensitivity luminescent sensing of pollutional small molecules and ions in Ln4O4 cluster based microporous metal-organic frameworks. J. Phys. Chem. C 2014, 118, 416−426.
(12) Wang, X. Y.; Zhao, Z. Y.; Han, Q.; Yu, M.; Kong, D. Y. A new zinc(II) supramolecular square: synthesis, crystal structure, thermal behavior and luminescence. J. Serb. Chem. Soc. 2015, 80, 1289–1295.
(13) Kong, Z. G.; Guo, S. N.; Yu, M.; Feng, S. Y.; Hu, B. A new luminescent Cd(II) coordination polymer constructed by mixed 1,4-naphthalenedi- carboxylate and N-donor chelating ligand. Chin. J. Struct. Chem. 2016, 35, 591–596.
(14) Yang, Y.; Du, P.; Ma, J. F.; Kan, W. Q.; Liu, B.; Yang, J. A series of metal-organic frameworks based on different salicylic derivatives and 1,1΄-(1,4-butanediyl)bis(imidazole) ligand: syntheses, structures, and luminescent properties. Cryst. Growth Des. 2011, 11, 5540–5553.
(15) Kong, Z. G.; Guo, S. N.; He, G. Y.; Li, X. H.; Jiao, Y. Q.; Wang, X. Y. Crystal structure and luminescence of a new two-dimensional Sr(II) coordination polymer based on 3,5-dinitro-salicylic acid and 1,10-phenanthroline. Chin. J. Struct. Chem. 2015, 34, 1295–1299.
(16) Sheldrick, G. M. SHELXS-97, Program for Solution of Crystal Structures. University of Göttingen, Germany 1997.
(17) Sheldrick, G. M. SHELXL-97, Program for Refinement of Crystal Structures. University of Göttingen, Germany 1997.
(18) Kong, Z. G.; Guo, S. N.; Zhou, X. L.; Lv, J. Q.; Zhao, Z. Y. A new cadmium(II) dimer constructed by 1,10-phenanthroline derivative and chlorine anions: syntheses, crystal structure and photoluminescence. Chin. J. Struct. Chem. 2015, 34, 606–610.
(19) Chen, Z. M.; Feng, Y. L.; Yang, Y. Q.; Li, W.; Yi, Z. J.; Chen, M. S. Hydrothermal synthesis, crystal structure and fluorescence properties of a three-dimensional triply-bridged binuclear zinc(Ⅱ) complex [Zn2(Mba)3(Phen)2EtOH)]•ClO4. Chin. J. Struct. Chem. 2012, 31, 1803–1809.
(20) Wang, X. Y.; Zhao, Z. Y.; Liu, R.; Xu, Y.; Li, X. H.; Xu, Z. L. Synthesis, crystal structure and luminescence of a new Zn(II) complex [Zn(1,2,3-HBTC)(L)]2 constructed by mixed ligands. Chin. J. Struct. Chem. 2015, 34, 725–728.
(21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. and Fox, D. J. Gaussan 09, Gaussian, Inc., Wallingford CT 2009.
(22) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926.
(23) Parr, R. G.; Yang, W. Density functional theory of atoms and molecules. Oxford University Press: Oxford 1989.
(24) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
(25) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
(26) Dunning Jr, T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer HF, III, Ed. Plenum: New York 1976, 128.