a (Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian Province University, China)
b (College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China)
c (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou 350002, China)
Optical spectroscopic properties of Yb3+-Doped MgMoO4 Crystal grown by TSSG method
GAO Han;ZHANG Xiao-Bin;CHEN Wen-Ting;YANG Zhi-Feng;PAN Jian-Fu;LI Ling-Yun;YU Yan
a (Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian Province University, China)
b (College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China)
c (Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences, Fuzhou 350002, China)
This paper reports the growth and spectral assessments of Yb3+ ion doped MgMoO4 (Yb3+:MgMoO4) crystal grown by the TSSG method. Polarized spectral properties of Yb3+:MgMoO4 crystal, including absorption and emission cross-sections, absorption FWHM and fluorescence lifetime, have been investigated. The laser performance parameters min, Isat and Imin have also been evaluated. All the investigated results show the Yb3+-doped MgMoO4 crystal is expected as a promising candidate for ultrashort pulse and tunable lasers.
This work was supported by the National Natural Science Foundation of China (No. 61308085, 51102047, 51472050 and 11404072),Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (2008DP173016), and the Natural Science Foundation of Fujian Province (2017J01746)
REFERENCES
(1)Petov, V.; Rivier, S.; Griebner, U.; Liu, J.; Mateos, X.; Aznar, A.; Sole, R.; Aguilo, M.; Diaz, F. Epitaxially grown Yb:KLu(WO4)2 composites for continuous-wave and mode-locked lasers in the 1 μm spectral range. J. Non-Cryst. Solids 2006, 352, 23672370.
(2) Huang, X. Y.; Lin, Z. B.; Hu, Z. S.; Zhang, L. Z.; Tsuboi, T.; Wang, G. F. Growth and spectral characterization of Yb3+:LiLa(WO4)2 crystal. Opt. Mater. 2006, 29, 403406.
(3) Huang, X. Y.; Wang, G. F. Growth and optical characteristics of Yb3+:-LiY(WO4)2 crystal. Opt. Mater. 2009, 31, 919922.
(4) Tang, L. Y.; Lin, Z. B.; Zhang, L. Z.; Wang, G. F. Phase diagram, growth and spectral characteristic of Yb3+:KY(WO4)2 crystal. J. Cryst. Growth 2005, 282, 376382.
(5) Li, X. Z.; Lin, Z. B.; Zhang, L. Z.; Wang, G. F. Growth and spectral properties of Yb3+-doped NaY(MoO4)2 crystal. Opt. Mater. 2007, 29, 728731.
(6) Cheng, Y.; Yang, X. B.; Xin, Z.; Cheng, S. S.; Cao, D. H.; Xu, X. D.; Xu, J. Crystal growth, spectral and laser properties of Yb3+:NaGd(WO4)2 crystal. Laser Phys. 2009, 19, 21682173.
(7) VoronKo, Y. K.; Subbotin, K. A.; Shukshin, V. E.; Lis, D. A.; Ushakov, S. N.; Popov, A. V.; Zharikov, E. V. Growth and spectroscopic investigations of Yb3+-doped NaGd(MoO4)2 and NaLa(MoO4)2 — new promising laser crystals. Opt. Mater. 2006, 29, 246252.
(8) Huang, X. Y.; Lin, Z. B.; Zhang, L. Z.; Wang, G. F. Growth and spectral characteristics of Yb3+-doped LiLa(MoO4)2 crystal. J. Cryst. Growth 2007, 306, 208211.
(9) Tang, L. Y.; Wang, G. F. Growth of Yb3+-doped KLa(WO4)2 crystal. J. Cryst. Growth 2005, 274, 469473.
(10) Li, A.; Li, J. Z.; Chen, Z. Q.; Wu, Y. H.; Wu, L. D.; Liu, G. J.; Wang, C. H.; Zhang, G. Growth and spectral properties of Yb3+/Ho3+ co-doped NaGd(MoO4)2 crystal. Mater. Express. 2015, 5, 527533.
(11) Pan, S. K.; Hu, Z. S.; Lin, Z. B.; Wang, G. F. Growth and optical properties of Yb3+-doped α-Ba3Y(BO3)3 crystal. J. Cryst. Growth 2004, 263, 214217.
(12) Pan, S. K.; Lu, S.; Ding, D. Z.; Ren, G. H.; Zhang, W. D.; Wang, G. F.; Pan, J. G. Growth and spectral properties of Yb3+-doped Ba3Gd(BO3)3 crystal. Chin. J. Struct. Chem. 2007, 26, 11531158.
(13) Pan, J. G.; Wang, G. F. Growth of Yb3+-doped Sr3Gd(BO3)3 crystal. J. Cryst. Growth 2004, 262, 527530.
(14) Zhang, Y.; Lin, Z. B.; Zhang, L. Z.; Wang, G. F. Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal. Opt. Mater. 2007, 29, 543546.
(15) Ma, P.; Lin, Z. B.; Wang, G. F. Growth and optical properties of Yb3+-doped Ba3Y2(BO3)4 crystal. Opt. Mater. 2007, 29, 15, 531556.
(16) Pan, J. G.; Lin, Z. B.; Hu, Z. S.; Zhang, L. Z.; Wang, G. F. Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal. Opt. Mater. 2006, 28, 250254.
(17) Lu, Y.; Hu, Z.; Lin, Z. B.; Wang, G. F. Growth and spectroscopic properties of Er3+/Yb3+:LaCa4O(BO3)3 crystals. J. Cryst. Growth 2003, 249, 270–273.
(18) Aron, A.; Aka, G.; Viana, B.; Kahn-Harari, A.; Vivien, D.; Druon, F.; Balembois, F.; Georges, P.; Brun, A.; Lenain, N.; Jacquet, M. Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material. Opt. Mater. 2001, 16, 181188.
(19) Li, W. X.; Pan, H. F.; Ding, L. E.; Zeng, H. P.; Zhao, G. J.; Yan, C. F.; Su, L. B.; Xu, J. Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser. Opt. Express 2006, 14, 686695.
(20) Li, W. X.; Hao, Q.; Zhai, H.; Zeng, H. P.; Lu, W.; Zhao, G. J.; Zheng, L. H.; Su, L. B.; Xu, J. Diode-pumped Yb:GSO femtosecond laser. Opt. Expres. 2007, 15, 23542359.
(21) Spasskii, D. A.; Kolobanov, V. N.; Mikhaĭlin, V. V.; Yu, L.; Berezovskaya, L.; Ivleva, I.; Voronina I. S. Luminescence peculiarities and optical properties of MgMoO4 and MgMoO4:Yb crystals. Opt. Spectrosc. 2009, 106, 556563.
(22) Mikhailik, V. B.; Kraus, H.; Wahl, D.; Mykhaylyk, M. S. Studies of electronic excitations in MgMoO4, CaMoO4 and CdMoO4 crystals using VUV synchrotron radiation. Phys. Stat. Sol. (b) 2005, 242, R17R19.
(23) Gorobets, Y. N.; Kosmyna, M. B.; Luchechko, A. P.; Nazarenko, B. P.; Puzikov, V. M.; Shekhovtsov, A. N.; Sugak, D. Y. Crystal growth of PbWO4:Nd3+ and PbMoO4:Nd3+ crystals and their characterization by means of optical and dielectric relaxation spectroscopy. J. Cryst. Growth 2011, 318, 687690.
(24) Mikhailik, V. B.; Kraus, H.; Wahl, D.; Ehrenberg, H.; Mykhaylyk, M. S. Optical and luminescence studies of ZnMoO4 using vacuum ultraviolet synchrotron radiation. Nucl. Instrum. Methods Phys. Res., Sect. A 2006, 562, 513516.
(25) Bakakin, V. V.; Klevtsova, R. F.; Gaponenko, L. A. Crystal structure of magnesium molybdate MgMoO4 — an example of modified closest packing with two types of tetrahedral. Kristallografiya 1982, 27, 3842.
(26) Mikhailik, V. B.; Kraus, H.; Itoh, M.; Iri, D.; Uchida, M. Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals. J. Phys.: Condens. Matter 2005. 17, 72097218.
(27) Li, L. Y.; Huang, Y. S.; Zhang, L. Z.; Lin, Z. B.; Wang, G. F. Growth, mechanical, thermal and spectral properties of Cr3+:MgMoO4 crystal. Plos One 2012, 7, 3339.
(28) Haumesser, P. H.; Gaumé, R.; Viana, B.; Vivien, D. Determination of laser parameters of ytterbium-doped oxide crystalline materials. J. Opt. Soc. Am. B 2002, 19, 23652375.
(29) Mccumber, D. E. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. 1964, 136, A954A957.
(30) Aull, B. F.; Jenssen, H. P. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. J. Quantum Electron. 1982, 18, 925930.
(31) Sumida, D. S.; Fan, T. Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett. 1994, 19, 13431345.
(32) Brenier, A. Excited-state dynamics including radiative diffusion in quasi-three-level laser crystals: application to Yb3+-doped Y3Al5O12. J. Opt. Soc. Am. B: Opt. Phys. 2006, 23, 22092216.
(33) Pamela, J.; Arthur, O.; Kimberly, S.; Liu, H. Y. Efficiency of GaInAs thermos photovoltaic cells: the effects of incident radiation, light trapping and recombinations. Opt. Express 2015, 23, 12081219.
(34) Deloach, L. D.; Payne, S. A.; Chase, L. L.; Smith, L. K.; Kway, W. L.; Krupke, W. F. Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications. J. Quantum Electron. 1993, 29, 11791191.
(35) Gang, Y.; Yan, C.; Feng, W.; Xu, X. D.; Su, L. B.; Xu, J. Spectral investigation of Yb-doped calcium pyroniobate crystal. J. Cryst. Growth 2008, 310, 725730.