Structural Properties and Potential Applications of Cellulose Nanofiber from Bamboo Shoot Shell
林柃敏;骆贤亮;庞杰;王琦;严志明;庄玮婧;郑宝东;郑亚凤
a (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
b (Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China)
笋壳纳米纤维素的结构特性与应用
LIN Ling-Min;LUO Xian-Liang;PANG Jie;WANG Qi;YAN Zhi-Ming;ZHUANG Wei-Jing;ZHENG Bao-Dong;ZHENG Ya-Feng
a (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
b (Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China)
Bamboo shoot shell (BSS), a by-product from bamboo shoot processing industries, is a natural resource of cellulose. In this study, high-pressure homogenization assisted with acidolysis treatment was employed to produce BSS cellulose nanofiber (CNF), and the structure was characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), high resolution transmission electron microscopy (HTTEM), thermogravimetric analysis (TGA), and 13C nuclear magnetic resonance (NMR). Moreover, the structure and properties of CNF were compared with those of BSS insoluble dietary fiber (IDF). The results showed that CNF was in the form of a grid-like micro fiber, and its particle size was obviously reduced, while the crystallinity, thermal stability and solubility were increased. The results indicated that high-pressure homogenization assisted with acidolysis treatment was an effective method to prepare the BSS CNF, which could be a promising biopolymer reinforced material.
REFERENCES
(1)Joye, I. J.; Davidov-Pardo, G.; McClements, D. J. Nanotechnology for increased micronutrient bioavailability. Trends Food Sci. Technol. 2014, 40, 168182.
(2) Leung, A. C. W.; Lam, E.; Chong, J.; Hrapovic, S.; Luong, J. H. T. Reinforced plastics and aerogels by nanocrystalline cellulose. J. Nanopart. Res. 2013, 15, 124.
(3) Arbatan, T.; Zhang, L.; Fang, X. Y.; Shen, W. Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chem. Eng. J. 2012, 210, 7479.
(4) Cherian, B. M.; Leão, A. L.; de Souza, S. F.; Costa, L. M. M.; de Olyveira, G. M.; Kottaisamy, M.; Nagarajan, E. R.; Thomas, S. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr. Polym. 2011, 86, 17901798.
(5) Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Indus. Crops Produ. 2012, 37, 9399.
(6) Kalita, E.; Nath, B. K.; Deb, P.; Agan, F.; Islam, M. R.; Saikia, K. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr. Polym. 2015, 122, 308313.
(7) Khawas, P.; Deka, S. C. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr. Polym. 2016, 137, 608616.
(8) Tibolla, H.; Pelissari, F. M.; Menegalli, F. C. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT - Food Sci. Technol. 2014, 59, 13111318.
(9) Cherian, B. M.; Leão, A. L.; de Souza, S. F.; Thomas, S.; Pothan, L. A.; Kottaisamy, M. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 2010, 81, 720725.
(10) Kaushik, A.; Singh, M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 2011, 346, 7685.
(11) Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol. 2008, 99, 16641671.
(12) Zheng, Y.; Zhang, S.; Wang, Q.; Lu, X.; Lin, L.; Tian, Y.; Xiao, J.; Zheng, B. Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba oldhami Nakal) shells. Carbohydr. Polym. 2016, 144, 438446.
(13) Ye, L.; Zhang, J.; Zhao, J.; Luo, Z.; Tu, S.; Yin, Y. Properties of biochar obtained from pyrolysis of bamboo shoot shell. J. Anal. Appl. Pyroly. 2015, 114, 172178.
(14) Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 2011, 83, 18041811.
(15) Teixeira, E. M.; Bondancia, T. J. Sugarcane bagasse whiskers: extraction and characterizations. Industrial Crops Products 2011, 33, 6366.
(16) Tonoli, G. H. D.; Teixeira, E. M.; Corrêa, A. C.; Marconcini, J. M.; Caixeta, L. A.; Pereira-Da-Silva, M. A.; Mattoso, L. H. C. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr. Polym. 2012, 89, 8088.
(17) Pirani, S.; Hashaikeh, R. Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr. Polym. 2013, 93, 357363.
(18) Davoudpour, Y.; Hossain, S.; Khalil, H. P. S. A.; Haafiz, M. K. M.; Ishak, Z. A. M.; Hassan, A.; Sarker, Z. I. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Industr. Crops Produ. 2015, 74, 381387.
(19) Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N. E.; Attia, H. Date flesh: chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676682.
(20) Pelissari, F. M.; Sobral, P. J. D. A.; Menegalli, F. C. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 2013, 21, 417-432.
(21) Wang, J.; Suo, G.; Wit, M. D.; Boom, R. M.; Schutyser, M. A. I. Dietary fibre enrichment from defatted rice bran by dry fractionation. J. Food Eng. 2016, 186, 5057.
(22) Oudiani, A. E.; Chaabouni, Y.; Msahli, S.; Sakli, F. Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr. Polym. 2011, 86, 12211229.
(23) Guo, Z. B.; Liu, W. T.; Zeng, S. X.; Zheng, B. D. Effect of ultra high pressure processing on the particle characteristics of lotus-seed starch. Chin. J. Struct. Chem. 2013, 32, 525532.
(24) Lu, P.; Hsieh, Y. L. Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym. 2010, 82, 329336.
(25) Chen, R.J.; Pang, X. D.; Wang, C.; Wei, Y. Structure and potential application of Konjac glucomannan nano microfibril aerogel. Chin. J. Struct. Chem. 2016, 35, 166168.
(26) Li, M.; Wang, L. J.; Li, D.; Cheng, Y. L.; Adhikari, B. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym. 2014, 102, 136143.
(27) Liou, P.; Nayigiziki, F. X.; Kong, F.; Mustapha, A.; Lin, M. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr. Polym. 2017, 157, 643650.
(28) Hult, E.; Molin, U.; Daniel, G.; Iversen, T.; Lennholm, H. The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 2001, 8, 103111.