REFERENCES
(1)Kuei, C. Y.; Tsai, W. L.; Tong, B. H.; Jiao, M.; Lee, W. K.; Chi, Y.; Wu, C. C.; Liu, S. H.; Lee, G. H.; Chou, P. T. Bis-tridentate Ir(III) complexes with nearly unitary RGB phosphorescence and organic light-emitting diodes with external quantum efficiency exceeding 31%. Adv. Mater. 2016, 28, 2795–2800.
(2) Li, D.; Zhang, H.; Wang, Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem. Soc. Rev. 2013, 42, 8416–8433.
(3) Chou, P. T.; Chi, Y.; Chung, M. W.; Lin, C. C. Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coord. Chem. Rev. 2011, 255, 2653–2665.
(4) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652.
(5) Lu, F.; Yamamura, M.; Nabeshima, T. A highly selective and sensitive ratiometric chemodosimeter for Hg2+ ions based on an iridium(III) complex via thioacetal deprotection reaction. Dalton Trans. 2013, 42, 12093–12100.
(6) Zhou, Y.; Yoon, J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem. Soc. Rev. 2012, 41, 52–67.
(7) Xie, Z.; Ma, L.; DeKrafft, K. E.; Jin, A.; Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 2010, 132, 922–923.
(8) Bejoymohandas, K. S.; Kumar, A.; Sreenadh, S.; Varathan, E.; Varughese, S.; Subramanian, V.; Reddy, M. L. P. A highly selective chemosensor for cyanide derived from a formyl-functionalized phosphorescent iridium(III) complex. Inorg. Chem. 2016, 55, 3448–3461.
(9) Sun, J.; Zhong, F.; Yi, X.; Zhao, J. Efficient enhancement of the visible-light absorption of cyclometalated Ir(III) complexes triplet photosensitizers with bodipy and applications in photooxidation and triplet-triplet annihilation upconversion. Inorg. Chem. 2013, 52, 6299–6310.
(10) DiSalle, B. F.; Bernhard, S. Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. J. Am. Chem. Soc. 2011, 133, 11819–11821.
(11) Yuan, Y. J.; Zhang, J. Y.; Yu, Z. T.; Feng, J. Y.; Luo, W. J.; Ye, J. H.; Zou, Z. G. Impact of ligand modification on hydrogen photogeneration and light-harvesting applications using cyclometalated iridium complexes. Inorg. Chem. 2012, 51, 4123–4133.
(12) Zhou, Y.; Gao, H.; Wang, X.; Qi, H. Electrogenerated chemiluminescence from heteroleptic iridium(III) complexes with multicolor emission. Inorg. Chem. 2015, 54, 1446–1453.
(13) Park, J.; Lee, Y. H.; Ryu, J. Y.; Lee, J.; Lee, M. H. The substituent effect of 2-R-o-carborane on the photophysical properties of iridium(III) cyclometalates. Dalton Trans. 2016, 45, 5667–5675
(14) Kumar, S.; Hisamatsu, Y.; Tamaki, Y.; Ishitani, O.; Aoki, S. Design and synthesis of heteroleptic cyclometalated iridium(III) complexes containing quinoline-type ligands that exhibit dual phosphorescence. Inorg. Chem. 2016, 55, 3829–3843.
(15) You, Y.; Kim, K. S.; Ahn, T. K.; Kim, D.; Park, S. Y. Direct spectroscopic observation of interligand energy transfer in cyclometalated heteroleptic iridium(III) complexes: a strategy for phosphorescence color tuning and white light generation. J. Phys. Chem. C 2007, 111, 4052–4060.
(16) Dedeian, K.; Shi, J.; Forsythe, E.; Morton, D. C. Blue phosphorescence from mixed cyano-isocyanide cyclometalated iridium(III) complexes. Inorg. Chem. 2007, 46, 1603–1611.
(17) Perez, M. D.; Djurovich, P. I.; Hassan, A.; Cheng, G. Y.; Stewart, T. J.; Aznavour, K.; Bau, R.; Thompson, M. E. Exciplex quenching of a luminescent cyclometallated platinum complex by extremely poor Lewis bases. Chem. Commun. 2009, 4215–4217.
(18) Shen, X.; Wang, F. L.; Sun, F.; Zhao, R.; Wang, X.; Jing, S.; Xu, Y.; Zhu, D. R. New 2-phenyl-5-nitropyridyl containing iridium(III) cyclometalated complexes: syntheses, structures, electrochemistry and photophysical properties. Inorg. Chem. Commun. 2011, 14, 1511–1515.
(19) Kappaun, S.; Sax, S.; Eder, S.; Möeller, K. C.; Waich, K.; Niedermair, F.; Saf, R.; Mereiter, K.; Jacob, J.; Müllen, K.; List, E. J. W.; Slugovc, C. 8-Quinolinolates as ligands for luminescent cyclometalated iridium complexes. Chem. Mater. 2007, 19, 1209–1211.
(20) Li, C. F.; Yong, G. P.; Li, Y. Z. Phosphorescent iridium(III) 2-phenylpyridine complexes: efficient color tuning by novel ancillary ligands. Inorg. Chem. Commun. 2010, 13, 179–182.
(21) Yin, W. X.; Liu, Y. T.; Ding, Y. J.; Lin, Q.; Lin, X. M.; Wu, C. L.; Yao, X. D.; Cai, Y. P. Construction of variable dimensional cadmium(III) coordination polymers from pyridine-2,3-dicarboxylic acid. CrystEngComm. 2015, 17, 3619–3626.
(22) Barszcz, B.; Hodorowicz, M.; Jab1onska-Wawrzycka, A.; Masternak, J.; Nitek, W.; Stadnicka, K. Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2,3-dicarboxylic acid: synthesis, crystal structure and spectroscopic investigation. Polyhedron 2010, 29, 1191–1200.
(23) Sengupta, P.; Ghosh, S.; Mak, T. C. W. A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium(II) and X-ray structural characterization of the biologically active trans-[Ru(PPh3)2(L1H)2] (L1H2 = pyridine 2,3-dicarboxylic acid). Polyhedron 2001, 20, 975–980.
(24) Jaber, F.; Charbonnier, F.; Faure, R. Preparation and crystal structure of tetraaqua-bis(hydrogenopyridine-2,3-(dicarboxylate)bis(pyridine- 2,3-dicarboxylate) hexa silver(I) (Ag6(C7H4NO4)2(C7H3NO4)2(H2O)4]n. Polyhedron 1996, 15, 2909–2913.
(25) Patrick, B. O.; Stevens, C. L.; Storr, A.; Thompson, R. C. Structural and magnetic properties of three copper(II) pyridine-2,3-dicarboxylate coordination polymers incorporating the same chain motif. Polyhedron 2003, 22, 3025–3035.
(26) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Götingen, Göttingen, Germany 1997.
(27) Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997.
(28) Sheldrick, G. M. SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany 1997.
(29) Park, Y. R.; Ha, Y. Comparison of emission characteristics with 4-, 5-, 6-membered iridium complexes for OLEDs. Mol. Cryst. Liq. Cryst. 2012, 563, 246–256.
(30) Hsieh, C. H.; Wu, F. I.; Fan, C. H.; Huang, M. J.; Lu, K. Y.; Chou, P. Y.; Yang, Y. H.; Wu, S. H.; Chen, I. C.; Chou, S. H.; Wong, K. T.; Cheng, C. H. Design and synthesis of iridium bis(carbene) complexes for efficient blue electrophosphorescence. Chem. Eur. J. 2011, 17, 9180–9187.
(31) Hung, J. Y.; Chi, Y.; Pai, I. H.; Yu, Y. C.; Lee, G. H.; Chou, P. T.; Wong, K. T.; Chen, C. C.; Wu, C. C. Blue-emitting Ir(III) phosphors with ancillary 4,6-difluorobenzyl diphenylphosphine based cyclometalate. Dalton Trans. 2009, 33, 6472–6475.
(32) Lin, C. H.; Chi, Y.; Chung, M. W.; Chen, Y. J.; Wang, K. W.; Lee, G. H.; Chou, P. T.; Hung, W. Y.; Chiu, H. C. Heteroleptic Ir(III) complexes containing both azolate chromophoric chelate and diphenylphosphinoaryl cyclometalates; Reactivities, electronic properties and applications. Dalton Trans. 2011, 40, 1132–1143. |