REFERENCES
(1)(a) Nuzhdin, A. L.; Dybtsev, D. N.; Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P. Enantioselective chromatographic resolution and one-pot synthesis of enantiomerically pure sulfoxides over a homochiral Zn-organic framework. J. Am. Chem. Soc. 2007, 129, 12958–12959. (b) Xie, S. M.; Zhang, Z. J.; Wang, Z. Y.; Yuan, L. M. Chiral metal-organic frameworks for high-resolution gas chromatographic separations. J. Am. Chem. Soc. 2011, 133, 11892–11895. (c) Hu, J. S.; Huang, X. H.; Pan, C. L.; Zhang, L. Photochemical and magnetic properties of seven new metal-organic frameworks constructed by flexible tetrapyridines and V-shaped polycarboxylate acids. Cryst. Growth Des. 2015, 15, 22722281. (d) Cui, G. H.; He, C. H.; Jiao, C. H.; Geng, J. C.; Blatov, V. A. Two metal-organic frameworks with unique high-connected binodal network topologies: synthesis, structures, and catalytic properties. CrystEngComm. 2012, 14, 42104216.
(2) Wang, J. J.; Su, Y. C.; Gao, L. J. Syntheses, structures, and photoluminescent properties of two 2D coordination polymers based on 1,3-di(2,4-dicarboxyphenyl) benzene and 1,3-di(4-pyridyl)propane. Chin. J. Struct. Chem. 2015, 2, 241247.
(3) (a) Habib, H. A.; Sanchiz, J.; Janiak, C. Magnetic and luminescence properties of Cu(II), Cu(II)4O4 core, and Cd(II) mixed-ligand metal-organic frameworks constructed from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzene-1,3,5-tricarboxylate. Inorg. Chim. Acta 2009, 362, 2452–2460. (b) Davies, R. P.; Less, R.; Lickiss, P. D.; Robertson, K.; White, A. J. P. Structural diversity in metal-organic frameworks built from rigid tetrahedral [Si(p-C6H4CO2)4]4− struts. Cryst. Growth Des. 2010, 10, 4571–4581. (c) Davies, R. P.; Lickiss, P. D.; Robertson, K.; White. A. J. P. MgII, CaII, and CoII metal-organic framework materials with [Si(p-C6H4CO2)3(p-C6H4CO2H)]3– struts. Aust. J. Chem. 2011, 64, 1239–1246. (d) Zang, S. Q.; Dong, M. M.; Fan, Y. J.; Hou, H. W.; Mark, T. C. E. Four cobaltic coordination polymers based on 5-iodo-isophthalic acid: halogen-related interaction and solvent effect. Cryst. Growth Des. 2012, 12, 1239–1246. (e) Davies, R. P.; Lickiss, P. D.; Robertson, K.; White, A. J. P. An organosilicon hexacarboxylic acid and its use in the construction of a novel metal organic framework isoreticular to MOF-5. CrystEngComm. 2012, 14, 758–760.
(4) (a) Jin, J. C.; Zhang, Y. N.; Wang, Y. Y.; Liu, J. Q. Dong, Z.; Shi, Q. Z. Syntheses and crystal structures of a series of coordination polymers constructed from C2-symmetric ligand 1,3-adamantanedicarboxylic acid. Chem. Asian J. 2010, 5, 1611–1619. (b) Yang, E. C.; Liu, Z. Y.; Shi, X. J.; Liang, Q. Q.; Zhao, X. J. Two 3D triazolate-tricarboxylate-bridged CuII/I frameworks by one-pot hydrothermal synthesis exhibiting spin-canted antiferromagnetism and strong antiferromagnetic couplings. Inorg. Chem. 2010, 49, 7969–7975. (c) Huang, S. L.; Lin, Y. J.; Hor, T. S.; Jin, G. X. Cp*Rh-based heterometallic metallarectangles: size-dependent borromean link structures and catalytic acyl transfer. J. Am. Chem. Soc. 2013, 135, 8125–8128.
(5) (a) Gong, Y.; Wu, T.; Lin, J. H. Metal-organic frameworks based on naphthalene-1,5-diyldioxy-di-acetate: structures, topologies, photoluminescence and photocatalytic properties. CrystEngComm. 2012, 14, 3727–3736. (b) Gong, Y.; Hao, Z.; Sun, J. L.; Shi, H. F.; Jiang, P. G.; Lin, J. H. Metal(II) complexes based on 1,4-bis(3-pyridylaminomethyl)benzene: structures, photoluminescence and photocatalytic properties. Dalton Trans. 2013, 42, 13241–132450. (c) Wang, X. L.; Huang, J. J.; Liu, L. L.; Liu, G.; Lin, H.; Zhang, J.; Chen, N.; Qu Y. Assembly of Zn/Cd coordination polymers containing helixes or polycatenane structures tuned by the tri-pyridyl–bis-amide ligands with different spacer: syntheses, structures, photoluminescent and photocatalytic properties. CrystEngComm. 2013, 15, 1960–1969.
(6) (a) Lin, J. D.; Long, X. F.; Lin, P.; Du, S. W. A series of cation-templated, polycarboxylate-based Cd(II) or Cd(II)/Li(I) frameworks with second-order nonlinear optical and ferroelectric properties. Cryst. Growth Des. 2010, 10, 146–157. (b) Tang, Q.; Liu, S. X.; Liu, Y. W.; Miao, J.; Li, S.; Zhang, L.; Shi, Z.; Zheng, Z. Cation sensing by a luminescent metal-organic framework with multiple lewis basic sites. Inorg. Chem. 2013, 52, 2799–2801.
(7) (a) Cui, P.; Chen, Z.; Gao, D. L.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures, and photoluminescence of a series of three-dimensional Cd(II) frameworks with a flexible ligand, 1,5-bis(5-tetrazolo)-3-oxapentane. Cryst. Growth Des. 2010, 10, 4370–4378. (b) Li, L.; Wang, S. Y.; Chen, T. L.; Sun, Z. H.; Luo, J. H.; Hong, M. Solvent-dependent formation of Cd(II) coordination polymers based on a C2-symmetric tricarboxylate linker. Cryst. Growth Des. 2012, 12, 4109–4115. (c) Xia, L.; Zhu, Y.; Wang, Y. M.; Liu, P.; Xie, J. M. Syntheses, structures, fluorescence and heterogeneous catalysis of coordination polymers with 4-benzoimidazol-1-yl-methyl benzoic acid and 2,2′-dipyridine. Chin. J. Struct. Chem. 2016, 4, 577–589.
(8) (a) Qin, L.; Hu, J. S.; Li, Y. Z.; Zheng, H. G. Effect of carboxylate coligands with different rigidity on supramolecular architectures based on one rigid didentate linear ligand. Cryst. Growth Des. 2012, 12, 403–413. (b) Manna, P.; Tripuramallu, B. K.; Das, S. K. Synthesis, structural characterization, and magnetic properties of a new series of coordination polymers: importance of steric hindrance at the coordination sphere. Cryst. Growth Des. 2012, 12, 4607–4623.
(9) Li, M.; Liu, L.; Zhang, L.; Lv, X. F.; Ding, J.; Hou, H. W.; Fan, Y. T. Novel coordination polymers of Zn(II) and Cd(II) tuned by different aromatic polycarboxylates: synthesis, structures and photocatalytic properties. CrystEngComm. 2014, 16, 6408–6416.
(10) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttigen, Germany 1996.
(11) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany 1997.
(12) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.
(13) Sluis, P. van der; Spek, A. L. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst. Sect. A 1990, 46, 194–201.
(14) Kanoo, P.; Mostafa, G.; Matsuda, R.; Kitagawa, S.; Maji, T. K. A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption. Chem. Commun. 2011, 47, 8106–8108.
(15) Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang,T.; Ming, L. J.; Larsen, R. W.; Ma, S. Q. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J. Am. Chem. Soc. 2012, 134, 13188–13191.
(16) Bai, H. Y.; Ma, J. F.; Yang, J.; Zhang, L. P.; Ma, J. C.; Liu, Y. Y. Eight two-dimensional and three-dimensional metal-organic frameworks based on a flexible tetrakis(imidazole) ligand: synthesis, topological structures, and photoluminescent properties. Cryst. Growth Des. 2010, 10, 1946–1959.
(17) Wang, B. C.; Wu, Q. R.; Hu, H. M.; Chen, X. L.; Yang, Z. H.; Shangguan, Y. Q.; Yang, M. L.; Xue, G. L. Four novel Zn(II)/Cd(II) metal-organic frameworks constructed from 4′-(4-pyridyl)-4,2′:6′,4″-terpyridine: hydrothermal synthesis, crystal structures, and luminescent properties. CrystEngComm. 2010, 12, 485–492. |