Structural Diversity and Luminescent Properties of Two Zinc(II) Polymers Based on Semirigid N-heterocyclic Ligand
许春莺;唐四叶;刘金强;邓东升;吉保明
College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
Structural Diversity and Luminescent Properties of Two Zinc(II) Polymers Based on Semirigid N-heterocyclic Ligand
College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
By varying the spacer angles of phenylenediacetic acid, two novel Zn(II) coor- dination polymers based on semirigid N-heterocyclic ligand 1,4-bis(2-ethylbenzimidazol- 1-ylmethyl) benzene, [Zn(beb)0.5(m-phda)]n (1) and {[Zn(beb)(p-phda)]•2H2O}n (2), were synthesized and fully structurally characterized. Polymer 1 exhibits a 2D grid-layer with a 44 topology. Polymer 2 shows a 2D layer with rare meso-helix. In addition, the thermal stability and photoluminescence properties of polymers 1 and 2 have also been investigated.
By varying the spacer angles of phenylenediacetic acid, two novel Zn(II) coor- dination polymers based on semirigid N-heterocyclic ligand 1,4-bis(2-ethylbenzimidazol- 1-ylmethyl) benzene, [Zn(beb)0.5(m-phda)]n (1) and {[Zn(beb)(p-phda)]•2H2O}n (2), were synthesized and fully structurally characterized. Polymer 1 exhibits a 2D grid-layer with a 44 topology. Polymer 2 shows a 2D layer with rare meso-helix. In addition, the thermal stability and photoluminescence properties of polymers 1 and 2 have also been investigated.
Financially supported by the National Natural Science Foundation (No. 21372112), and the Science and Technology Research Key Project of the Education Department of Henan Province (2014A150025)
许春莺;唐四叶;刘金强;邓东升;吉保明. Structural Diversity and Luminescent Properties of Two Zinc(II) Polymers Based on Semirigid N-heterocyclic Ligand[J]. 结构化学, 2017, 36(1): 127-134.
XU Chun-Ying;TANG Si-Ye;LIU Jin-Qiang;DENG Dong-Sheng;JI Bao-Ming. Structural Diversity and Luminescent Properties of Two Zinc(II) Polymers Based on Semirigid N-heterocyclic Ligand. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(1): 127-134.
REFERENCES
(1) Elsaidi, S. K.; Mohamed, M. H.; Pham, T.; Hussein, T.; Wojtas, L.; Zaworotko, M. J.; Space, B. Crystal engineering of a 4,6-c fsc platform that can serve as a carbon dioxide single-molecule trap. Cryst. Growth Des. 2016, 16, 1071–1080.
(2) Wang, Z. J.; Qin, L.; Zhang, X.; Chen, J. X.; Zheng, H. G. Syntheses, characterizations, luminescent properties, and controlling interpenetration of five metal-organic frameworks based on bis(4-(pyridine-4-yl)phenyl)amine. Cryst. Growth Des. 2015, 15, 1303–1310.
(3) Zhao, J. P.; Han, S. D.; Jiang, X.; Liu, S. J.; Zhao, R.; Chang, Z.; Bu, X. H. A heterometallic strategy to achieve a large magnetocaloric effect in polymeric 3d complexes. Chem. Commun. 2015, 51, 8288–8291.
(4) Guo, X.; Yan, Y.; Guo, H.; Wang, N.; Qi, Y. Construction of two novel coordination polymers from a V-shaped bisimidazole ligand: synthesis, characterization and properties. Inorg. Chem. Commun. 2016, 64, 59–62.
(5) Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.
(6) Meng, F. D.; Qin, L.; Zhang, M. D.; Zheng, H. G. Two pairs of isomorphism and two 3D meta-organic frameworks based on a star-like ligand tri(4-pyridylphenyl)amine. CrystEngComm. 2014, 16, 698–706.
(7) Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.
(8) Yoon, M.; Sriramalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.
(9) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835.
(10) Coronado, E.; Espallargas, G. M. Dynamic magnetic MOFs. Chem. Soc. Rev. 2013, 42, 1525–1539.
(11) Su, C. Y.; Cai, Y. P.; Chen, C. L.; Smith, M. D.; Kaim, W.; zurLoye, H. C. Ligand-directed molecular architectures: self-assembly of two-dimensional rectangular metallocycles and three-dimensional trigonal or tetragonal prisms. J. Am. Chem. Soc. 2003, 125, 8595–8613.
(12) Su, C. Y.; Cai, Y. P.; Chen, C. L; Lissner, F.; Kang, B. S.; Kaim, W. Self-assembly of trigonal-prismatic metallocages encapsulating BF4- or CuI32- as anionic cuests: structures and mechanism of formation. Angew. Chem. Int. Ed. 2002, 41, 3371–3375.
(13) Li, Y. H.; Su, C. Y.; Goforth, A. M.; Shimizu, K. D.; Gray, K. D.; Smith, M. D.; zurLoye, H. C. The first ‘two-over/two-under’ (2O/2U) 2D weave structure assembled from Hg-containing 1D coordination polymer chains. Chem. Commun. 2003, 1630–1631.
(14) Xu, C.; Li, L.; Wang, Y.; Guo, Q.; Wang, X.; Hou, H.; Fan, Y. Six 3D Cd(II) coordination polymers based on semirigid bis(methybenzimidazole) and aromatic polycarboxylates: syntheses, topological structures and photoluminescent properties. Cryst. Growth Des. 2011, 11, 4667–4675.
(15) Yu, Z. Q.; Pan, M.; Jiang, J. J.; Liu, Z. M.; Su, C. Y. Anion modulated structural diversification in the assembly of Cd(II) complexes based on a balance-like dipodal ligand. Cryst. Growth Des. 2012, 12, 2389–2396.
(16) Zhang, X.; Fan, L.; Zhang, W.; Fan, W.; Sunb, L.; Zhao, X. Syntheses, structures, and magnetic properties of five coordination polymers constructed from biphenyl-3,4΄,5-tricarboxylic acid and (bis)imidazole linkers. CrystEngComm. 2014, 16, 3203–3213.
(17) Xu, C.; Guo, Q.; Wang, X.; Hou, H.; Fan, Y. A case study of ZnII-bmb meso-helical coordination polymers upon the spacer angles and lengths of dicarboxylate coligands. Cryst. Growth Des. 2011, 11, 1869–1879.
(18) Aakeroÿ, C. B.; Desper, J.; Leonard, B.; Urbina, J. F. Toward high-yielding supramolecular synthesis: directed assembly of ditopic imidazoles/benzimidazoles and dicarboxylic acids into cocrystals via selective O−H•••N hydrogen bonds. Cryst. Growth Des. 2005, 5, 865.
(19) Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures. University of Gottingen, Göttingen, Germany 1997.
(20) Reger, D. L.; Pascui, A. E.; Smith, M. D.; Jezierska, J.; Ozarowski, A. Dinuclear complexes containing linear M-F-M (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)) bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties. Inorg. Chem. 2012, 51, 11820–11836.
(21) Fang, Q. R.; Zhu, G. S.; Xue, M.; Sun, J. Y.; Sun, F. X.; Qiu, S. L. Structure, luminescence, and adsorption properties of two chiral microporous metal-organic frameworks. Inorg. Chem. 2006, 45, 3582–3587.