Syntheses, Structures and Photoluminescent Properties of Cd(II) Polymeric Complexes Based on 5-Aminoisophthalic Acid and Bipyridine Co-ligands
余程;许文涛;熊伟;周有福;黄得财
a (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
b (University of the Chinese Academy of Sciences, Beijing 100049, China)
Syntheses, Structures and Photoluminescent Properties of Cd(II) Polymeric Complexes Based on 5-Aminoisophthalic Acid and Bipyridine Co-ligands
a (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
b (University of the Chinese Academy of Sciences, Beijing 100049, China)
摘要Two novel complexes, namely {[Cd(AIP)(4,4’-bpy)]·1.3DMF}n (1) and [Cd(AIP)(2,2’-bpy)]n (2) have been synthesized through solvothermal reaction (H2AIP = 5-aminoisophthalic acid, 2,2’-bpy = 2,2’-bipyridine, 4,4’-bpy = 4,4’-bipyridine, and DMF = N,N’-dimethylformamide) and structurally determined by single crystal X-ray diffraction. Complex 1 shows three-dimensional (3D) layer-pillar frameworks with rectangular channels, while complex 2 displays a two-dimensional (2D) wave net architecture. Furthermore, 1 and 2 were characterized by element analysis, infrared spectra (IR), thermal gravimetric analyses (TGA) and fluorescence measurements. The luminescent properties of 1 dispersed in various organic solvents have been investigated systematically, demonstrating highly selectivity for acetone via the fluorescence quenching effect.
Abstract:Two novel complexes, namely {[Cd(AIP)(4,4΄-bpy)]•1.3DMF}n (1) and [Cd(AIP)(2,2΄- bpy)]n (2), have been synthesized through solvothermal reaction (H2AIP = 5-aminoisophthalic acid, 2,2΄-bpy = 2,2΄-bipyridine, 4,4΄-bpy = 4,4΄-bipyridine, and DMF = N,N΄-dimethylformamide) and structurally determined by single-crystal X-ray diffraction. Complex 1 shows a three-dimensional (3D) layer-pillar framework with rectangular channels, while complex 2 displays a two-dimensional (2D) wave net architecture. Furthermore, 1 and 2 were characterized by elemental analysis, infrared spectra (IR), thermal gravimetric analyses (TGA) and fluorescence measurements. The luminescent properties of 1 dispersed in various organic solvents have been investigated systematically, demonstrating high selectivity for acetone via the fluorescence quenching effect.
The authors are grateful to the National Natural Science Foundation of China (21501178) and Natural Science Funds of Fujian Province (No. 2014H0055) for financial support of this work
余程;许文涛;熊伟;周有福;黄得财. Syntheses, Structures and Photoluminescent Properties of Cd(II) Polymeric Complexes Based on 5-Aminoisophthalic Acid and Bipyridine Co-ligands[J]. 结构化学, 2017, 36(1): 143-152.
YU Cheng;XU Wen-Tao;XIONG Wei;ZHOU You-Fu;HUANG De-Cai. Syntheses, Structures and Photoluminescent Properties of Cd(II) Polymeric Complexes Based on 5-Aminoisophthalic Acid and Bipyridine Co-ligands. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2017, 36(1): 143-152.
REFERENCES
(1) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.
(2) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.
(3) Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Infinite coordination polymer nano- and microparticle structures. Chem. Soc. Rev. 2009, 38, 1218–1227.
(4) Kim, S.; Dawson, K. W.; Gelfand, B. S.; Taylor, J. M.; Shimizu, G. K. Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement. J. Am. Chem. Soc. 2013, 135, 963–966.
(5) Yi, F. Y.; Yang, W.; Sun, Z. M. Highly selective acetone fluorescent sensors based on microporous Cd(II) metal-organic frameworks. J. Mater. Chem. 2012, 22, 23201–23209.
(6) Guo, Z.; Xu, H.; Su, S.; Cai, J.; Dang, S.; Xiang, S.; Qian, G.; Zhang, H.; O΄Keeffe, M.; Chen, B. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem. Commun. 2011, 47, 5551–5553.
(7) Ma, D.; Wang, W.; Li, Y.; Li, J.; Daiguebonne, C.; Calvez, G.; Guillou, O. In situ 2, 5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. CrystEngComm. 2010, 12, 4372–4377.
(8) Yang, W.; Feng, J.; Zhang, H. Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J. Mater. Chem. 2012, 22, 6819–6823.
(9) Chen, B. L.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 2008, 130, 6718–6719.
(10) Xiao, Y.; Cui, Y.; Zheng, Q.; Xiang, S.; Qian, G.; Chen, B. A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution. Chem. Commun. 2010, 46, 5503–5505.
(11) Guo, H. L.; Zhu, Y. Z.; Wang, S.; Su, S. Q.; Zhou, L.; Zhang, H. J. Combining coordination modulation with acid–base adjustment for the control over size of metal–organic frameworks. Chem. Mater. 2012, 24, 444–450.
(12) Caskey, S. R.; Matzger, A. J. Selected applications of metal-organic frameworks in sustainable energy technologies. Mater. Matters. 2009, 4, 111–118.
(13) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.
(14) Zhou, Y. F.; Xu, W. T.; Wu, M. Y.; Lan, A. J.; Zhang, L. J.; Feng, R.; Jiang, F. L.; Hong, M. C. Topological and luminescent properties of two coordination polymers constructed from 3-pyridinepropionic acid. Inorg. Chem. Commun. 2012, 15, 140–145.
(15) Wang, H. N.; Meng, X.; Qin, C.; Wang, X. L.; Yang, G. S.; Su, Z. M. A series of pillar-layer metal–organic frameworks based on 5-aminoisophthalic acid and 4, 4′-bipyridine. Dalton Trans. 2012, 41, 1047–1053.
(16) Wu, H.; Liu, H. Y.; Yang, J.; Liu, B.; Ma, J. F.; Liu, Y. Y. Series of coordination polymers based on different carboxylates and a tri(4-imidazolylphenyl) amine ligand: entangled structures and photoluminescence. Cryst. Growth Des. 2011, 11, 2317–2324.
(17) Zhang, K. L.; Qiao, N.; Gao, H. Y.; Zhou, F.; Zhang, M. Self-assembly of two novel three-dimensional supramolecular networks with blue photoluminescence. Polyhedron 2007, 26, 2461–2469.
(18) Cheng, H. J.; Li, H. X.; Ren, Z. G.; Lu, C. N.; Shi, J.; Lang, J. P. Substituted groups-directed assembly of Cd(ii) coordination polymers based on 5-R-1, 3-benzenedicarboxylate and 4,4΄-bis(1-imidazolyl) bibenzene: syntheses, structures and photoluminescent properties. CrystEngComm. 2012, 14, 6064–6071.
(19) Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563.
(20) Xu, C. Y.; Li, L. K.; Wang, Y. P.; Guo, Q. Q.; Wang, X. J.; Hou, H. W.; Fan, Y. T. Three-dimensional Cd(II) coordination polymers based on semirigid bis(methylbenzimidazole) and aromatic polycarboxylates: syntheses, topological structures and photoluminescent properties. Cryst. Growth Des. 2011, 11, 4667–4675.
(21) Sheldrick, G. M. SHELXS-97, Program for Solution of Crystal Structures. University of Göttingen, Germany 1997.
(22) Sheldrick, G. M. SHELXL-97, Program for Refinement of Crystal Structures. University of Göttingen, Germany 1997.
(23) Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.
(24) Zhang, K. L.; Zhong, Z. Y.; Zhang, L.; Jing, C. Y.; Daniels, L. M.; Walton, R. I. Synthesis, characterization and properties of a family of lead(ii)-organic frameworks based on a multi-functional ligand 2-amino-4-sulfobenzoic acid exhibiting auxiliary ligand-dependent dehydration–rehydration behaviours. Dalton Trans. 2014, 43, 11597–11610.
(25) Zhang, W. H.; Dong, Z.; Wang, Y. Y.; Hou, L.; Jin, J. C.; Huang, W. H.; Shi, Q. Z. Synthesis, structural diversity and fluorescent characterisation of a series of d10 metal-organic frameworks (MOFs): reaction conditions, secondary ligand and metal effects. Dalton Trans. 2011, 40, 2509–2521.
(26) Liu, Y. Y.; Liu, B.; Yang, J.; Ma, J. F. Five new coordination polymers constructed from 1,4-bis(1H-imidazol-1-yl) butane and different carboxylates: syntheses, structures and photoluminescence. Polyhedron 2013, 56, 96–101.
(27) Yersin, H.; Vogler, A. (Eds.). Photochemistry and Photophysics of Coordination Compounds I, Springer, Berlin 1987.
(28) Wang, H. N.; Qin, J. S.; Du, D. Y.; Xu, G. J.; Wang, X. L.; Shao, K. Z.; Yuan, G.; Li, L. J.; Su, Z. M. An en-templated 3D coordination polymer based on H 2 pzdc with macrometallocycles. Inorg. Chem. Commun. 2010, 13, 1227–1230.
(29) Fang, S. M.; Hu, M.; Zhang, Q.; Du, M.; Liu, C. S. Ag(I) and Zn(II) coordination polymers with a bulky naphthalene-based dicarboxyl tecton and different 4,4΄-bipyridyl-like bridging co-ligands: structural regulation and properties. Dalton Trans. 2011, 40, 4527–4541.
(30) Yang, W. T.; Feng, J.; Zhang, H. J. Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J. Mater. Chem. 2012, 22, 6819–6823.
(31) Cong, S. M.; Liu, D. W. Li, L.; Jin, J.; Niu, S. Y.; Zhang, G. N. Synthesis, structure and surface photo-electric properties of a series of Co-aip coordination polymers. Chem. Res. Chinese U. 2011, 32, 814–821.