REFERENCES
(1)Hilton, S. T.; Ho, T. C.; Pljevaljcic, G.; Jones, K. A new route to spirooxindoles. Org. Lett. 2000, 2, 2639–2641.
(2) Kornet, M. J.; Thio, A. P. Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity. J. Med. Chem. 1976, 19, 892-898.
(3) Cui, C. B.; Kakeya, H.; Okada, G.; Onose, R.; Ubukata, M.; Takahashi, I.; Isono, K.; Osada, H. Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus. J. Antibiot. 1995, 48, 1382–1384.
(4) Yu, N.; Aramini, J. M.; Germann, M. W.; Huang, Z. Reactions of salicylaldehydes with alkyl cyanoacetates on the surface of solid catalysts: syntheses of 4H-chromene derivatives. Tetra. Lett. 2000, 41, 6993–6996.
(5) Chen, H.; Shi, D. Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J. Comb. Chem. 2010, 12, 571–576.
(6) Abdel-Rahman, A. H.; Keshk, E. M.; Hanna, M. A.; El-Bady, S. M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Biorg. Med. Chem. 2004, 12, 2483–2488.
(7) Wang, L. M.; Jiao, N.; Qiu, J.; Yu, J. J.; Liu, J. Q.; Guo, F. L.; Liu, Y. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Cheminform 2010, 66, 339–343.
(8) Bazgir, A.; Hosseini, G.; Ghahremanzadeh, R. Copper ferrite nanoparticles: an efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spirooxindoles in water. ACS Comb. Sci. 2013, 15, 530–534.
(9) Chen, Q.; Liang, J.; Wang, S.; Wang, D.; Wang, R. An asymmetric approach toward chiral multicyclic spirooxindoles from isothiocyanato oxindoles and unsaturated pyrazolones by a chiral tertiary amine thiourea catalyst. Chem. Commun. 2013, 44, 1657–1659.
(10) Galliford, C. V.; Prof, K. A. S. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758.
(11) Guo, R. Y.; An, Z. M.; Mo, L. P.; Wang, R. Z.; Liu, H. X.; Wang, S. X.; Zhang, Z. H. Meglumine: a novel and efficient catalyst for one-pot, three-component combinatorial synthesis of functionalized 2-amino-4H-pyrans. ACS Comb. Sci. 2013, 15, 557–563.
(12) Jin, S. S.; Wang, H.; Guo, H. Y. Ionic liquid catalyzed one-pot synthesis of novel spiro-2-amino-3-phenylsulfonyl-4 H -pyran derivatives. Tetra. Lett. 2013, 54, 2353–2356.
(13) Khalafi-Nezhad, A.; Shahidzadeh, E. S.; Sarikhani, S.; Panahi, F. A new silica-supported organocatalyst based on L-proline: an efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water. J. Mol. Catal. A-Chem. 2013, 379, 1–8.
(14) Lakshmi, N. V.; Sivakumar, P. M.; Muralidharan, D.; Doble, M.; Perumal, P. T. Expeditious synthesis, antibacterial activity evaluation and GQSAR studies of 3-bisoxindoles, 2-oxindolyl-2-hydroxyindan-1,3-diones and 2-oxindolyl-2-hydroxyacenaphthylen-1-ones. RSC Adv. 2013, 3, 496–507.
(15) Yu, F.; Huang, R.; Ni, H.; Fan, J.; Yan, S.; Lin, J. Three-component stereoselective synthesis of spirooxindole derivatives. Green Chem. 2013, 15, 453–462.
(16) Asadi, S.; Mohammadi Ziarani, G.; Rahimifard, M.; Abolhassani Soorki, A. A green one-pot synthesis of spironaphthopyrano[1,2-b]indeno-7,3΄-indolines. Res. Chem. Intermed. 2014, 41, 6219–6227.
(17) Kong, D.; Liu, R.; Li, G.; Zhang, P.; Wu, M. A rapid, convenient, solventless green approach for the synthesis of α-hydroxyphosphonates by grinding. Asian J. Chem. 2014, 26, 1246–1248.
(18) Kong, D.; Li, G.; Liu, R. Synthesis and crystal structure of diethyl tosyloxybenzylphosphonate. Asian J. Chem. 2014, 26, 2138–2140.
(19) Li, G.; Wu, M.; Kong, D.; Liu, R.; Zhou, X.; Liu, F. One-pot and highly regio-selective 1,3-dipole cycloaddition of azomethine ylide generated in situ to tetraethyl vinylidenebisphosphonate (VBP) catalyzed by cerium(IV) oxide. New J. Chem. 2014, 38, 3350–3353.
(20) Kong, D.; Wu, M.; Hang, C.; Ma, J.; Wan, D. Synthesis and characterization of α-aminophosphonic acids containing adenine. Asian J. Chem. 2011, 23, 2871–2873.
(21) Kong, D.; Wu, M.; Li, Q.; Ma, J. Stereospecific synthesis of cis-3-arylureido-2-phenyl-2-oxo- naphtho[1,2-d]-1,2-oxaphospholance. Chin. J. Org. Chem. 2010, 30, 1911–1913.
(22) Tsotinis, A.; Gerasimopoulou, M.; Vlachou, M.; Moreau, D.; Roussakis, C. C5,C6-Disubstituted 1H-indole-2-carboxamides: synthesis and cytotoxic activity in the human non-small lung cancer cell line NSCLC-N16-L16. Lett. Drug Des. Discovery 2006, 3, 14–16.
(23) Kritsanida, M.; Magiatis, P.; Skaltsounis, A. L.; Peng, Y.; Li, P.; Wennogle, L. P. Synthesis and antiproliferative activity of 7-azaindirubin-3΄-oxime, a 7-aza isostere of the natural indirubin pharmacophore. J. Nat. Prod. 2009, 72, 2199–2202.
(24) Braña, M. F.; Gradillas, A.; Ovalles, A. G.; López, B.; Acero, N.; Llinares, F.; Mingarro, D. M. Synthesis and biological activity of N,N-dialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone derivatives. Biorg. Med. Chem. 2006, 14, 9–16.
(25) David, M.; Nichols, C. J.; Riley, D. A.; Simpkins, N. S. The synthesis of bioactive indolocarbazoles related to K-252a. Org. Biomol. Chem. 2005, 3, 2953–2975.
(26) Tsujii, S.; Rinehart, K. L.; Gunasekera, S. P.; Kashman, Y.; Cross, S. S.; Lui, M. S.; Pomponi, S. A.; Diaz, M. C. Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem. 2002, 53, 5446–5453.
(27) Chen, M.; Wang, Z.; Hu, C.; Wu, X.; Wang, P. Rapid evaluating of antimicrobial activity of vanillin with the microplate reader in 96-cell plate. Food & Fermentation Industries 2009, 35, 63–66. |