Thermoelectric Properties of Ag-doped In4Se2.95 Polycrystalline Compounds
陈燕春;刘鹏飞;陈玲;吴立明
a (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)
b (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
c (School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China)
Thermoelectric Properties of Ag-doped In4Se2.95 Polycrystalline Compounds
CHEN Yan-Chun;LIU Peng-Fei;CHEN Ling;WU Li-Ming
a (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)
b (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
c (School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China)
In4Se3-based materials are noticeable n-type thermoelectric materials because of lead-free and intrinsically low lattice thermal conductivity, but the In4Se3-δ crystals (with Se-deficiency, δ) suffer strong anisotropy and cleavage habit. Thus the researches on polycry- stalline In4Se3-based materials are of great importance. Herein, we experimentally and theoretically investigated the thermoelectric properties of In4-xSe2.95Agx polycrystalline compounds. Ag occupying the intercalation or In4 site is energetically most favorable in light of the density functional theory calculation. The maximum solubility of Ag (xm) is very low (xm < 0.03) and the experimental result indicates that the electrical transport behavior of In4-xSe2.95Agx compounds is not significantly optimized by Ag-dopant. Consequently, a maximum ZT of 0.92 at 723 K is obtained by In3.98Se2.95Ag0.02 compound that represents 15% enhancement over that of the un-doped one which benefits from the slightly enhanced power factor and the reduced total thermal conductivity.
In4Se3-based materials are noticeable n-type thermoelectric materials because of lead-free and intrinsically low lattice thermal conductivity, but the In4Se3-δ crystals (with Se-deficiency, δ) suffer strong anisotropy and cleavage habit. Thus the researches on polycry- stalline In4Se3-based materials are of great importance. Herein, we experimentally and theoretically investigated the thermoelectric properties of In4-xSe2.95Agx polycrystalline compounds. Ag occupying the intercalation or In4 site is energetically most favorable in light of the density functional theory calculation. The maximum solubility of Ag (xm) is very low (xm < 0.03) and the experimental result indicates that the electrical transport behavior of In4-xSe2.95Agx compounds is not significantly optimized by Ag-dopant. Consequently, a maximum ZT of 0.92 at 723 K is obtained by In3.98Se2.95Ag0.02 compound that represents 15% enhancement over that of the un-doped one which benefits from the slightly enhanced power factor and the reduced total thermal conductivity.
REFERENCES
(1)Elsheikh, M. H.; Shnawah, D. A.; Sabri, M. F. M.; Said, S. B. M.; Hassan, M. H.; Bashir, M. B. A.; Mohamad, M. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sust. Energ. Rev. 2014, 30, 337–355.
(2) Sales, B. C. Smaller is cooler. Science 2002, 295, 1248–1249.
(3) DiSalvo, F. J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706.
(4) Losovyj, Y. B.; Makinistian, L.; Albanesi, E. A.; Petukhov, A. G.; Liu, J.; Galiy, P.; Dveriy, O. R.; Dowben, P. A. The anisotropic band structure of layered In4Se3 (001). J. Appl. Phys. 2008, 104, 083713.
(5) Hogg, J. H. C.; Sutherland, H. H.; Williams, D. J. Crystallographic evidence for the existence of the phases In4Se3 and In4Te3 which contain the homonuclear triatornic cation (In3)5+. Chem. Commun. 1971, 1568−1569.
(6) Rhyee, J. S.; Lee, K. H.; Lee, S. M.; Cho, E.; Kim, S. II.; Lee, E.; Kwon, Y. S.; Shim, J. H.; Kotliar, G. Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals. Nature 2009, 459, 965−968.
(7) Zhai, Y. B.; Zhang, Q. S.; Jiang, J.; Zhang, T.; Xiao, Y. K.; Yang, S. G.; Xu, G. J. Thermoelectric performance of the ordered In4Se3–In composite constructed by monotectic solidification. J. Mater. Chem. A 2013, 1, 8844−8847.
(8) Zhu, G. H.; Lan, Y. C.; Wang, H.; Joshi, G.; Chen, Q.; Ren, Z. F. Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3−x compounds. Phys. Rev. B 2011, 83, 115201.
(9) Rhyee, J. S.; Cho, E.; Lee, K. H.; Lee, S. M.; Kim, S. II.; Kim, H. S.; Kwon, Y. S.; Kim, S. J. Thermoelectric properties and anisotropic electronic band structure on the In4Se3−x compounds. Appl. Phys. Lett. 2009, 95, 212106.
(10) Kim, J. H.; Kim, M. J.; Oh, S.; Rhyee, J. S. Thermoelectric properties of Se-deficient and Pb-/Sn-codoped In4Pb0.01Sn0.03Se3−x polycrystalline compounds. J. Alloys Compd. 2014, 615, 933−936.
(11) Luo, Y. B.; Yang, J. Y.; Liu, M.; Xiao, Y.; Fu, L. W.; Li, W. X.; Zhang, D.; Zhang, M. Y.; Cheng, Y. D. Multiple heteroatoms induced carrier engineering and hierarchical nanostructure for high thermoelectric performance of polycrystalline In4Se2.5. J. Mater. Chem. A 2015, 3, 1251-1257.
(12) Luo, Y. B.; Yang, J. Y.; Li, G.; Liu, M.; Xiao, Y.; Fu, L. W.; Li, W. X.; Zhu, P. W.; Peng, J. Y.; Gao, S. Z.; Zhang, J. Q. Enhancement of the thermoelectric performance of polycrystalline In4Se2.5 by copper intercalation and bromine substitution. Adv. Energy Mater. 2014, 4, 1300599.
(13) Lin, Z. S.; Chen, L.; Wang, L. M.; Zhao, J. T.; Wu, L. M. A promising mid-temperature thermoelectric material candidate: Pb/Sn-codoped In4PbxSnySe3. Adv. Mater. 2013, 25, 4800−4806.
(14) He, S. H.; Lin, Z. X.; Muhammad, A. K.; Liu, P. F.; Chen, L.; Wu, L. M. Thermoelectric properties of Ni-substituted polycrystalline In4Se3. Chin. J. Struct. Chem. 2015, 34, 1217−1223.
(15) Shi, X.; Cho, J. Y.; Salvador, J. R.; Yang, J.; Wang, H. Thermoelectric properties of polycrystalline In4Se3 and In4Te3. Appl. Phys. Lett. 2010, 96, 162108.
(16) Rhyee, J. S.; Cho, E.; Ahn, K.; Lee, K. H.; Lee, S. M. Thermoelectric properties of bipolar diffusion effect on In4Se3-xTex compounds. Appl. Phys. Lett. 2010, 97, 152104.
(17) Lim, Y. S.; Jeong, M.; Seo, W. S.; Lee, J. H.; Park, C. H.; Sznajder, M.; Kharkhalis, L. Y.; Bercha, D. M.; Yang, J. Condenson state and its effects on thermoelectric properties in In4Se3. J. Phys. D: Appl. Phys. 2013, 46, 275304.
(18) Ahn, K.; Cho, E.; Rhyee, J. S.; Kim, S. II.; Lee, S. M.; Lee, H. K. Effect of cationic substitution on the thermoelectric properties of In4-xMxSe2.95 compounds (M = Na, Ca, Zn, Ga, Sn, Pb; x = 0.1). Appl. Phys. Lett. 2011, 99, 102110.
(19) Rhyee, J. S.; Ahn, K.; Lee, K. H.; Ji, H. S.; Shim, J. H. Enhancement of the thermoelectric figure-of-merit in a wide temperature range in In4Se3–xCl0.03 bulk crystals. Adv. Mater. 2011, 23, 2191–2194.
(20) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169−11186.
(21) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.
(22) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
(23) Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.
(24) Gibbs, Z. M.; Kim, H. S.; Wang, H.; Snyder, G. J. Band gap estimation from temperature dependent Seebeck measurement-deviations from the 2e|S|maxTmax relation. Appl. Phys. Lett. 2015, 106, 022112.
(25) Goldsmid, H. J.; Sharp, J. W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 1999, 28, 869–872.
(26) Lee, M. H.; Kim, K. R.; Rhyee, J. S.; Park, S. D.; Snyder, G. J. High thermoelectric figure-of-merit in Sb2Te3/Ag2Te bulk composites as Pb-free p-type thermoelectric materials. J. Mater. Chem. C 2015, 3, 10494–10499.
(27) Kim, J. H.; Kim, M. J.; Oh, S.; Rhyee, J. S.; Park, S. D.; Ahn, D. Thermoelectric properties and chlorine doping effect of In4Pb0.01Sn0.03Se2.9Clx polycrystalline compounds. Dalton Trans. 2015, 44, 3185–3189.
(28) May, A. F.; Toberer, E. S.; Saramat, A.; Snyder, G. J. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x. Phys. Rev. B 2009, 80, 125205.