REFERENCES
(1)Müllen, K.; Scherf, U. Organic Light-emitting Devices, Synthesis, Properties, and Applications. Wiley-VCH, Weinheim 2006.
(2) Minaev, B.; Baryshnikov, G.; Agren, H. Principles of phosphorescent organic light emitting devices. Phys. Chem. Chem. Phys. 2014, 16, 1719–1758.
(3) Sasabe, H.; Kido, J. Development of high performance OLEDs for general lighting. J. Mater. Chem. C 2013, 1, 1699–1707.
(4) Che, W. L.; Liang, W. D.; Wang, J.; Lin, G. X.; Li, G. F.; Han, C.; Cui, X. J.; Zhu, D. X. Synthesis, crystal structure and photoluminescence of triphenylamin derivative. J. Mol. Sci. 2013, 29, 259–264.
(5) Han, L. Z.; Wang, C. T.; Ren, A. M.; Liu, Y. L.; Liu, P. J. Structural and optical properties of triphenylamin-substitutef anthracene derivatives. J. Mol. Sci. 2013, 29, 146–151.
(6) Jin, R.;•Irfan, A. Theoretical study on photophysical properties of multifunctional star-shaped molecules with 1,8-naphthalimide core for organic light-emitting diode and organic solar cell application. Theor. Chem. Acc. 2015, 134, 89.
(7) Ramachandram, B.; Saroja, G.; Sankaran, N. B.; Samanta, A. Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts. J. Phys. Chem. B 2000, 104, 11824–11832.
(8) Ivanov, I. P.; Dimitrova, M. B.; Tasheva, D. N.; Cheshmedzhieva, D. V.; Lozanov, V. S.; Ilieva, S. V. Synthesis, structural analysis and application of a series of solid-state fluorochromes-aryl hydrazones of 4-hydrazino-N-hexyl-1,8-naphthalimide. Tetrahedron 2013, 69, 712–721.
(9) Li, Y.; Xu, Y.; Qian, X.; Qu, B. Naphthalimide-thiazoles as novel photonucleases: molecular design, synthesis, and evaluation. Tetra. Lett. 2004, 45, 1247–1251.
(10) Grabchev, I.; Chovelon, J. M.; Qian, X. A copolymer of 4-N,N-dimethylaminoethylene-N-allyl-1,8-naphthalimide with methylmethacrylate as a selective fluorescent chemosensor in homogeneous systems for metal cations. J. Photochem. Photobiol. A 2003, 158, 37–43.
(11) Morgado, J.; Gruner, J.; Walcott, S. P.; Yong, T. M.; Cervini, R.; Moratti, S. C.; Holmes, A. B.; Friend, R. H. 4-AcNI—a new polymer for light-emitting diodes. Synth. Met. 1998, 95, 113–117.
(12) Islam, A.; Cheng, C. C.; Chi, S. H.; Lee, S. J.; Hela, G. P.; Chen, I. C.; Cheng, C. H. Aminonaphthalic anhydrides as red-emitting materials: electroluminescence, crystal structure, and photophysical properties. J. Phys. Chem. B 2005, 109, 5509–5517.
(13) Yang, J. X.; Wang, X. L.; Wang, X. M.; Xu, L. H. The synthesis and spectral properties of novel 4-phenylacetylene-1,8-naphthalimide derivatives. Dyes Pigm. 2005, 66, 83–87.
(14) Magalhaes, J. L.; Pereira, R. V.; Triboni, E. R.; Berci Filho, P.; Gehlen, M. H.; Nart, F. C. Solvent effect on the photophysical properties of 4-phenoxy-N-methyl-1,8-naphthalimide. J. Photochem. Photobiol. A 2006, 183, 165–170.
(15) Liu, Y.; Niu, F.; Lian, J.; Zeng, P.; Niu, H. Synthesis and properties of starburst amorphous molecules: 1,3,5-tris(1,8-naphthalimide-4-yl)benzenes. Synth. Met. 2010, 160, 2055–2060.
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009, Gaussian 09, Revision A.01.
(17) Mancini, G.; Zazza, C.; Aschib, M.; Sannaa, N. Conformational analysis and UV/Vis spectroscopic properties of a rotaxane-based molecular machine in acetonitrile dilute solution: when simulations meet experiments. Phys. Chem. Chem. Phys. 2011, 13, 2342–2349.
(18) Li, H.; Li, N.; Sun, R.; Gu, H.; Ge, J.; Lu, J.; Xu, Q.; Xia, X.; Wang, L. Dynamic random access memory devices based on functionalized copolymers with pendant hydrazine naphthalimide group. J. Phys. Chem. C 2011, 115, 8288–8294.
(19) Li, Z.; Yang, Q.; Chang, R.; Ma, G.; Chen, M.; Zhang, W. N-Heteroaryl-1,8-naphthalimide fluorescent sensor for water: molecular design, synthesis and proper. Dyes. Pigm. 2011, 88, 307–314.
(20) Gudeika, D.; Michaleviciute, A.; Grazulevicius, J. V.; Lygaitis, R.; Grigalevicius, S.; Jankauskas, V.; Miasojedovas, A.; Jursenas, S.; Sini, G. Structure properties relationship of donor-acceptor derivatives of triphenylamine and 1,8-naphthalimide. J. Phys. Chem. C 2012, 116, 14811–14819.
(21) Pearson, R. G. Absolute electronegativity and absolute hardness of Lewis acids and bases. J. Am. Chem. Soc. 1985, 107, 6801–6806.
(22) Start, M. S. Epoxidation of alkenes by peroxyl radicals in the gas phase: structure-activity relationships. J. Phys. Chem. A 1997, 101, 8296–8301.
(23) Forés, M.; Duran, M.; Solà, M.; Adamowicz, L. Excited-state intramolecular proton transfer and rotamerism of 2-(2-hydroxyvinyl)benzimidazole and 2-(2-hydroxyphenyl)imidazole. J. Phys. Chem. A 1999, 103, 4413–4420.
(24) Schleyer, P.; Von, R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; III Schaefer, H. F.; Schreiners, P. R. The Encyclopedia of Computational Chemistry. Wiley, UK, Chichester 1998.
(25) Marcus, R. A. Electron transfer reactions in chemistry. theory and experiment. Rev. Mod. Phys. 1993, 65, 599–610.
(26) Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 1964, 15, 155–196.
(27) Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J. L.; Cornil, J. Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: a full quantum-chemical treatment. J. Am. Chem. Soc. 2005, 127, 6077–6076.
(28) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J. Am. Chem. Soc. 2005, 127, 2339–2350.
(29) Martinelli, N. G.; Idé, J.; Sánchez-Carrera, R. S.; Coropceanu, V.; Brédas, J. L.; Ducasse, L.; Castet, F.; Cornil, J.; Beljonne, D. Influence of structural dynamics on polarization energies in anthracene single crystals. J. Phys. Chem. C 2010, 114, 20678–20685.
(30) McMahon, D. P.; Trois, A. Evaluation of the external reorganization energy of polyacenes. J. Phys. Chem. Lett. 2010, 1, 941–946.
(31) Köse, M. E.; Long, H.; Kim, K.; Graf, P.; Ginley, D. Charge transport simulations in conjugated dendrimers. J. Phys. Chem. A 2010, 114, 4388–4393.
(32) Sakanoue, K.; Motoda, M.; Sugimoto, M.; Sakaki, S. A molecular orbital study on the hole transport property of organic amine compounds. J. Phys. Chem. A 1999, 103, 5551–5556.
(33) Köse, M. E.; Mitchell, W. J.; Kopidakis, N.; Chang, C. H.; Shaheen, S. E.; Kim, K.; Rumbles, G. Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J. Am. Chem. Soc. 2007, 129, 14257–14270.
(34) Lin, B. C.; Cheng, C. P.; You, Z. Q.; Hsu, C. P. Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an electron transporter. J. Am. Chem. Soc. 2005, 127, 66–67.
(35) Gruhn, N. E.; da Silva Filho, D. A.; Bill, T. G.; Malagoli, M.; Coropceanu, V.; Kahn, A.; Brédas, J. L. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 2002, 124, 7918–7919. |