(1)Shi, H.; Chen, G.; Zhang, C.; Zou, Z. Polymeric g–C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. Acs Catalysis 2014, 4, 3637–3643.
(2) Raksakoon, C.; Maihom, T.; Probst, M.; Limtrakul, J. Hydration of carbon dioxide in copper-alkoxide functionalized metal-organic frameworks: a DFT study. J. Phys. Chem. C 2015, 119, 3564–3571.
(3) Daza, Y. A.; Kent, R. A.; Yung, M. M.; Kuhn, J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides. Ind. Eng. Chem. Res. 2014, 53, 5828–5837.
(4) Zall, C. M.; Linehan, J. C.; Appel, A. M. A molecular copper catalyst for hydrogenation of CO2 to formate. ACS Catalysis 2015, 5, 5301–5305.
(5) Yang, X.; Kattel, S.; Senanayake, S. D.; Boscoboinik, J. A.; Nie, X.; Graciani, J. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOXTiO2 interface. J. Am. Chem. Soc. 2015, 137, 10104–10107.
(6) Kobayashi, K.; Tanaka, K. Reactivity of CO2 activated on transition metals and sulfur ligands. Inorg. Chem. 2015, 54, 5085–5095.
(7) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Trialkylborane-assisted CO2 reduction by late transition metal hydrides. Organomet. Chem. 2011, 30, 4308–4314.
(8) Mondal, B.; Neese, F.; Ye, S. Control in the rate-determining step provides a promising strategy to develop new catalysts for CO2 hydrogenation: a local pair natural orbital coupled cluster theory study. Inorg. Chem. 2015, 54, 7192–7198.
(9) Jessop, P. G.; Ikariya, T.; Noyori, R. Homogeneous hydrogenation of carbon dioxide. Chem. Rev. 1995, 95, 259–272.
(10) Solymosi, F.; Erdöhelyi, A. Hydrogenation of CO2 to CH4 over alumina-supported noble metals. J. Mol Catal Rev. 1980, 8471–474.
(11) Weatherbee, G. D.; Bartholomew, C. H. Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru. J. Catal. 1984, 87, 352-362.
(12) Chen, X. Y.; Zhao, Y. X.; Wang, S. G. Relativistic DFT study on the reaction mechanism of second-row transition metal Ru with CO2. J. Phys. Chem. A 2006, 110, 3552–3558.
(13) Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.
(14) Declercq, R.; Bouhadir, G.; Bourissou, D.; Légaré, M. A.; Courtemanche, M. A.; Nahi, K. S. Hydroboration of carbon dioxide using ambiphilic phosphine-borane catalysts: on the role of the formaldehyde adduct. ACS Catalysis 2015, 5, 2513–2520.
(15) Karamad, M.; Hansen, H. A.; Rossmeisl, J.; Norskov, J. K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2. ACS Catalysis 2015, 5, 4075–4081.
(16) Tominaga, K. I.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane. J. Chem. Soc. Chem. Commun. 1993, 7, 629–631.
(17) Tsuchiya, K.; Huang, J. D.; Tominaga, K. Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes. ACS Catalysis 2013, 3, 2865–2868.
(18) Harvey, J. N.; Poli, R.; Smith, K. M. Understanding the reactivity of transition metal complexes involving multiple spin states. Coord. Chem. Rev. 2003, 238, 347–361.
(19) Shaik, S. Spin-orbital coupling in the oxidative activation of H–H by FeO+. Selection rules and reactivity effects. J. Am. Chem. Soc. 1997, 119, 1773–1786.
(20) Nian, J.; Wang, Y.; Ma, W.; Ji, D.; Wang, C.; La, M. Theoretical investigation for the cycle reaction of N2O (x1∑+) with CO (1∑+) catalyzed by IrO n+ (n = 1, 2) and utilizing the energy span model to study its kinetic information. J. Phys. Chem. A 2011, 115, 11023–11032.
(21) Ma, W. P.; Wang, Y. C.; Lv, L. L.; Jin, Y. Z.; Nian, J. Y.; Ji, D. F.; Wang, Q. A theoretician’s view of the Ce+ mediated activation of the N–H bond in ammonia. Comput. Theor. Chem. 2011, 977, 69–77.
(22) Schröder, D.; Shaik, S.; Schwarz, H. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 2000, 33, 139–145.
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B.01.
(24) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
(25) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
(26) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269.
(27) Yoshizawa, K.; Shiota, Y.; Yamabe, T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: a study of crossing seams of potential energy surfaces. J. Chem. Phys. 1999, 111, 538–545.
(28) Harvey, J. N.; Aschi, M.; Schwarz, H. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc. 1998, 99, 95–99.
(29) Coveney, P. V.; Child, M. S.; Barany, A. The two-state S matrix for the Landau-Zener potential curve crossing model: predissociation and resonant scattering. J. Phys. B: At. Mol. Phys. 1985, 18, 4557–4580.
(30) Zhu, C. Y.; Nakamura, H. Theory of nonadiabatic transition for general two-state curve crossing problems. II. Landau-Zener case. J. Chem. Phys. 1995, 102, 7448–7461.
(31) Wittig, C. The Landau-Zener Formula. J. Phys. Chem. B 2005, 109, 8428–8430.
(32) Goodrow, A.; Bell, A. T.; Head-Gordon, M. Are spin-forbidden crossings a Bottleneck in methanol oxidation? J. Phys. Chem. C 2009,113, 19361–19364.
(33) Jin, Y. Z.; Wang, Y. C.; Geng, Z. Y.; Wang, H. J.; Gan, Y. Z. Competitive activation of C–H and C–F bonds in gas phase reaction of Ir+ with CH3F: a DFT study. J. Organomet. Chem. 2012, 717, 195–201.
(34) Steinfeld, J, I.; Francisco, J. S.; Hase, W. L. Chemical kinetics and dynamics. Prentice Hall 1999.
(35) Shavitt. On the problem of calculating the rate constants of elementary reactions. Chem. Phys. 1959, 31, 1359–1367.
(36) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580–592.
(37) Fedorov, D. G.; Koseki, S.; Schmidt, M. W.; Gordon, M. S. Spin-orbital coupling in molecules: chemistry beyond the adiabatic approximation. Int. Rev. Phys. Chem. 2003, 22, 551–592. |