REFERENCES
(1)Férey, G.; Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380−1399.
(2) Shimomura, S.; Higuchi, M.; Matsuda, R.; Yoneda, K.; Hijikata, Y.; Kubota, Y.; Mita, Y.; Kim, J.; Takata, M.; Kitagawa, S. Highly conducting coordination polymers based on infinite M(4,4΄-bpy) chains flanked by regular stacks of non-integer TCNQ radicals. Nat. Chem. 2010, 2, 633−637.
(3) McKinlay, A. C.; Xiao, B.; Wragg, D. S.; Wheatley, P. S.; Megson, I. L.; Morris, R. E. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 2008, 130, 10440−10444.
(4) Batten, S. R; Neville, S. M.; Turner, D. R. Coordination polymers: design, analysis and application. Royal Society of Chemistry 2008.
(5) Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294−1314.
(6) Morris, R. E.; Wheatley, R. E. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 2008, 47, 4966−4981.
(7) Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695−704.
(8) Yang, S.; Lin, X.; Blake, A. J.; Walker, G.; Hubberstey, P.; Champness, N. R.; Schroder, M. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nat. Chem. 2009, 1, 487−493.
(9) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477−1504.
(10) Ma, L.; Lin, W. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Angew. Chem. Int. Ed. 2009, 48, 3637−3640.
(11) Wu, T.; Zhang, J.; Zhou, C.; Wang, L.; Bu, X.; Feng, P. Zeolite RHO-type net with the lightest elements. J. Am. Chem. Soc. 2009, 131, 6111−6113.
(12) Lin, Z.; Jiang, F.; Chen, L.; Yuan, D.; Hong, M. New 3D chiral framework of indium with 1,3,5-benzenetricarboxylate. Inorg. Chem. 2005, 44, 73−76.
(13) Huh, S.; Kwon, T. H.; Park, P.; Kim, S. J.; Kim, Y. Nitroxyl radicals as low toxic spin-labels for non-invasive magnetic resonance imaging of blood-brain barrier permeability for conventional therapeutics. Chem. Commun. 2009, 49, 53−55.
(14) Liu, Y.; Kravtsov, V. C.; Beauchamp, D. A.; Eubank, J. F.; Eddaoudi, M. 4-Connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions: kagomé lattice and the M6L12 octahedron. J. Am. Chem. Soc. 2005, 127, 7266−7267.
(15) Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R.; Eddaoudi, M. Assembly of metal-organic frameworks (MOFs) based on indiumtrimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed. 2007, 46, 3278−3283.
(16) Zheng, S. T.; Wu, T.; Chou, C.; Fuhr, A.; Feng, P. Y.; Bu, X. H. Development of composite inorganic building blocks for MOFs. J. Am. Chem. Soc. 2012, 134, 4517−4520.
(17) Zheng, S. T.; Bu, J. J.; Wu, T.; Chou, C.; Feng, P. Y.; Bu, X. H. Porous indium-organic frameworks and systematization of structural building blocks. Angew. Chem. Int. Ed. 2011, 50, 8858−8862.
(18) Yu, J. C.; Cui, Y. J.; Wu, C. D.; Yang, Y.; Wang, Z. Y.; O΄Keeffe, M.; Chen, B. L.; Qian, G. D. Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal–organic framework. Angew. Chem. Int. Ed. 2012, 51, 10542−10545.
(19) Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 2003, 13, 663−702.
(20) Tanabe, K. K.; Cohen, S. M. Postsynthetic modification of metal-organic frameworks-a progress report. Chem. Soc. Rev. 2011, 40, 498−519.
(21) Lin, Q. P.; Wu, T.; Bu, X. H.; Feng, P. Y. A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamers. Dalton Trans. 2012, 41, 3620−3622.
(22) Foo, M. L.; Horike, S.; Kitagawa, S. Synthesis and characterization of a 1D porous barium carboxylate coordination polymer, [Ba(HBTB)] (H3BTB = benzene-1,3,5-trisbenzoic acid). Inorg. Chem. 2011, 50, 11853−11855.
(23) Xiang, H.; Gao, W. Y.; Zhong, D. C.; Jiang, L.; Lu, T. B. The diverse structures of Cd(II) coordination polymers with 1,3,5-benzenetribenzoate tuned by organic bases. CrystEngComm. 2011, 13, 5825−5288.
(24) Mu, B.; Walton, K. S. Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB. Adsorption 2011, 17, 777−782.
(25) Han, D.; Jiang, F. L.; Wu, M. Y.; Chen, L.; Chen, Q. H. Hong, M. C. A non-interpenetrated porous metal-organic framework with high gas-uptake capacity. Chem. Commun. 2011, 47, 9861−9863.
(26) Choi, S. B.; Seo, M. J.; Cho, M.; Kim, Y.; Jin, M. K.; Jung, D. Y.; Choi, J. S.; Ahn, W. S.; Rowsell, J. L. C.; Kim, J. A. porous and interpenetrated metal-organic framework comprising tetranuclear ironIII-oxo clusters and tripodal organic carboxylates and its implications for (3,8)-coordinated networks. Crystal Growth & Design 2007, 7, 2290−2293.
(27) Mu, B.; Huang, Y. G.; Walton, K. S. A metal-organic framework with coordinatively unsaturated metal centers and microporous structure. CrystEngComm. 2010, 12, 2347−2349.
(28) Ibarra, Y. G.; Lin, X.; Yang, S. H.; Blake, A. J.; Walker, G. S.; Barnett, S. A.; Allan, D. R.; Champness, N. R.; Hubberstey, P.; Schrçder, M. Structures and H2 adsorption properties of porous scandium metal-organic frameworks. Chem. Eur. J. 2010, 16, 13671−13679.
(29) Tanabe, K. K.; Allen, C. A.; Cohen, S. M. Photochemical activation of a metal-organic framework to reveal functionality. Angew. Chem. Int. Ed. 2010, 49, 9730−9733.
(30) Wollmann, P.; Leistner, M.; Stoeck, U.; Grunker, R.; Gedrich, K.; Klein, N.; Throl, O.; Grählert, W.; Senkovska, I.; Dreisbach, F.; Kaskel, S. High-throughput screening: speeding up porous materials discovery. Chem Commun. 2011, 47, 5151−5153.
(31) Gao, Q.; Jiang, F. L.; Wu, M. Y.; Huang, Y. G.; Yuan, D. Q.; Wei, W.; Hong, M. C. Indium(III)-2,5-pyridine dicarboxylate complexes with mononuclear, 1D chain, 2D layer and 3D chiral frameworks. CrystEngComm. 2009, 11, 918−926.
(32) Mu, B.; Li, F.; Walton, K. S. A novel metal-organic coordination polymer for selective adsorption of CO2 over CH4. Chem. Commun. 2009, 2493−2495.
(33) Caskey, S. R.; Matzger, A. J. Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. Inorg. Chem. 2008, 47, 7942−7944.
(34) Kim, J.; Chen, B. L.; Yaghi, O. M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239−8247.
(35) Hohner, G.; Vogtle, F. Durch dreifache verklammerung erzwungene triphenylbenzol-und triphenylmethan dimere. Chem. Ber. 1977, 110, 3052−3077.
(36) Bruker. SMART.; Saint.; SADABS.; Bruker AXS Inc.; Madison.; Wisconsin. USA 1998.
(37) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination. University of Gottingen, Germany 1997.
(38) Blatov, V. A.; Shevchenko, A. P.; Serezhkin, V. N. J. Synthesis, structure, and H2/CO2 adsorption in a three-dimensional 4-connected triorganotin coordination polymer with a SQC topology. Appl. Crystallogr. 2000, 33, 1193−1200.
(39) Yang, S. H.; Lewis, X.; Lin, W.; Suyetin, X.; Schröder, M. A partially-interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nature Mater. 2012, 11, 710−716.
(40) Yang, S. H.; Liu, J. L.; Sun, K. M.; Thomas, A. J.; Davies, M. W.; George, A. J.; Blake, A. H.; Hill, A. N.; Fitch, C. Tang, C.; Schröder, M. Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. J. Am. Chem. Soc. 2013, 135, 4954−4957.
(41) Wang, X. M.; Fan, R. Q.; Qiang, L. S.; Li, W. Q.; Wang, P.; Zhang, H. J.; Yang, Y. L. Tunable luminescence from rare 2D Ga(III)/In(III) coordination polymers coexisting with three different conjugated system aromatic ligands. Chem. Commun. 2014, 50, 5023−5026.
(42) Lu, C. J.; Ben, T.; Xu, S. X.; Qiu, S. L. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film. Angew. Chem. Int. Ed. 2014, 53, 6454−6458.
(43) Guo, Z. Y.; Xu, H.; Su, S. Q.; Cai, J. F.; Dang, S.; Xiang, S. C.; Qian, G. D.; Zhang, H. J.; O΄Keeffe, M.; Chen, H. J. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem. Commun. 2011, 47, 5551−5553.
(44) Sun, F.; Yin, Z.; Wang, Q. Q.; Sun, D.; Zeng, M. H.; Kurmoo, M. Tandem postsynthetic modification of a metal-organic framework by thermal elimination and subsequent bromination: effects on absorption properties and photoluminescence. Angew. Chem. 2013, 125, 4636−4641.
(45) Liu, X. G.; Wang, H.; Chen, B.; Zou, Y.; Gu, Z. G.; Zhao, Z. J.; Shen, L. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. Chem. Commun. 2015, 51, 1677−1680.
(46) Vergadou, V.; Pistolis, G.; Michaelides, A.; Varvounis, G.; Siskos, M.; Boukos, N.; Skoulika, S. Self-organization of four symmetric tri-phenyl-benzene derivatives. Cryst. Growth Des. 2006, 6, 2486−2492.
(47) Zou, R. Q.; Abdel-Fattah, A. I.; Xu, H. W.; Burrell, A. K.; Larson, T. E.; McCleskey, T. E.; Wei, Q.; Janicke, M. T.; Hickmott, D. D.; Timofeeva, T. V.; Zhao, Y. S. Porous metal-organic frameworks containing alkali-bridged two-fold interpenetration: synthesis, gas adsorption, and fluorescence properties. Cryst. Growth Des. 2010, 10, 1301−1306. |