A Novel TADDOL-based Chiral Metal-organic Framework: Synthesis, Structure and Photoluminescence Study
王秀仁;李子建;巩伟;刘燕;刘百战;崔勇
a (School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China)
b (China Tobacco, Shanghai 200240, China)
A Novel TADDOL-based Chiral Metal-organic Framework: Synthesis, Structure and Photoluminescence Study
WANG Xiu-Ren;LI Zi-Jian;GONG Wei;LIU Yan;LIU Bai-Zhan;CUI Yong
a (School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China)
b (China Tobacco, Shanghai 200240, China)
A new C2-symmetric TADDOL-based ligand H4L was designed and synthesized from readily available tartaric acid and was used to construct a novel TADDOL-based chiral metal-organic framework {[Co2L(DMA)(H2O)5]•2DMA}n 1 (DMA = N,N΄-dimethylacetamide). It was characterized by single-crystal and powder X-ray diffraction, Fourier-transform infrared spectra (FTIR), solid-state circular dichroism (CD) and thermal gravimetric analysis (TGA). 1 crystallizes in the chiral orthorhombic space group P212121 with a = 9.7060(8), b = 15.5661(1), c = 44.564(3) Å, V = 6732.9(9) Å3, Z = 4, Mr = 1394.08, Dc = 1.375 g/cm3, F(000) = 2888, GOOF = 1.032, the final R = 0.0607 and wR = 0.1582 for 21374 observed reflections with I > 2σ(I). Each Co2 cluster in 1 is linked by three ligands and each ligand is coordinated to three Co2 clusters with one free carboxylate group, thus generating a 2D network. These 2D networks are further extended into a 3D supramolecule framework by the hydrogen bonding interactions (O–H…O) in an A-B-A-B stacking mode. Additionally, the photoluminescence of 1 and H4L were also investigated.
A new C2-symmetric TADDOL-based ligand H4L was designed and synthesized from readily available tartaric acid and was used to construct a novel TADDOL-based chiral metal-organic framework {[Co2L(DMA)(H2O)5]•2DMA}n 1 (DMA = N,N΄-dimethylacetamide). It was characterized by single-crystal and powder X-ray diffraction, Fourier-transform infrared spectra (FTIR), solid-state circular dichroism (CD) and thermal gravimetric analysis (TGA). 1 crystallizes in the chiral orthorhombic space group P212121 with a = 9.7060(8), b = 15.5661(1), c = 44.564(3) Å, V = 6732.9(9) Å3, Z = 4, Mr = 1394.08, Dc = 1.375 g/cm3, F(000) = 2888, GOOF = 1.032, the final R = 0.0607 and wR = 0.1582 for 21374 observed reflections with I > 2σ(I). Each Co2 cluster in 1 is linked by three ligands and each ligand is coordinated to three Co2 clusters with one free carboxylate group, thus generating a 2D network. These 2D networks are further extended into a 3D supramolecule framework by the hydrogen bonding interactions (O–H…O) in an A-B-A-B stacking mode. Additionally, the photoluminescence of 1 and H4L were also investigated.
REFERENCES
(1) Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H. C. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 55615593.
(2) Liu, W.; Yin, X. B. Metal-organic frameworks for electrochemical applications. Trac. Trends Anal. Chem. 2016, 75, 8696.
(3) Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Almeida Paz, F. A. Multifunctional metal-organic frameworks: from academia to industrial applications. Chem. Soc. Rev. 2015, 44, 67746803.
(4) Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic frameworks catalyzed C–C and C-heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 19221947.
(5) Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 59825993.
(6) Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 59946010.
(7) Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 60626096.
(8) Lin, Z. J.; Lu, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 58675895.
(9) Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 13431370.
(10) Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 58155840.
(11) Li, H.; Niu, Z.; Han, T.; Zhang, Z.; Shi, W.; Cheng, P. A microporous lanthanide metal-organic framework containing channels: synthesis, structure, gas adsorption and magnetic properties. Sci. China Chem. 2011, 54, 14231429.
(12) Zhang, X.; Yang, Q.; Zhao, J.; Hu, T. L.; Chang, Z.; Bu, X. H. Three interpenetrated copper(II) coordination polymers based on a V-shaped ligand: synthesis, structures, sorption and magnetic properties. Sci. China Chem. 2011, 54, 14461453.
(13) Wei, Z.; Yuan, D.; Zhao, X.; Sun, D.; Zhou, H. C. Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Sci. China Chem. 2013, 56, 418422.
(14) Chen, W. T.; Xu, Y. P.; Luo, Q. Y.; Dai, Y. K.; Huang, S. L.; Guo, P. Y. Photophysical and electrochemical properties of a novel 4f-3d heterometallic porphyrin. J. Porphyrins Phthalocyanines 2014, 18, 600603.
(15) Chen, W. T.; Huang, J. G.; Luo, Q. Y.; Xu, Y. P.; Fu, H. R. A novel terbium-cobalt tetra (4-sulfonatophenyl) porphyrin: synthesis, structure and photophysical and electrochemical properties. J. Porphyrins Phthalocyanines 2015, 19, 154159.
(16) Liu, Y.; Xuan, W.; Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 2010, 22, 41124135.
(17) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 11961231.
(18) Peluso, P.; Mamane, V.; Cossu, S. Homochiral metal-organic frameworks and their application in chromatography enantioseparations. J. Chromatogr. A 2014, 1363, 1126.
(19) Peng, Y.; Gong, T.; Zhang, K.; Lin, X.; Liu, Y.; Jiang, J.; Cui, Y. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat. Commun. 2014, 5.
(20) Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 90509053.
(21) Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H. C. Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc. Chem. Res. 2011, 44, 123-133.
(22) Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2010, 2, 838846.
(23) Mo, K.; Yang, Y.; Cui, Y. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc. 2014, 136, 17461749.
(24) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y. Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J. Am. Chem. Soc. 2012, 134, 80588061.
(25) Xi, W.; Liu, Y.; Xia, Q.; Li, Z; Cui, Y. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal-organic frameworks for asymmetric organic transformations. Chem. Eur. J. 2015, 21, 16.
(26) Zhang, F. W.; Zhou, Y. F.; Dong, J. Q.; Liu, B. Z.; Zheng, S. J.; Cui, Y. Synthesis and crystal structure of a novel chiral 3D metal-organic framework based on an N-methyl substituted salan ligand. Chin. J. Struc. Chem. 2014, 33, 11541158.
(27) Ye. C. C; Zhu, C.; Gong, T.; Shen, E.; Xuan, W.; Cui, Y.; Liu, B. A novel Cu-based metallosalan complex: synthesis, structure and chiral sensor study. Chin. J. Struc. Chem. 2013, 32, 10761082.
(28) Yoon, T. P.; Jacobsen, E. N. Privileged chiral catalysts. Science 2003, 299, 16911693.
(29) Pellissier, H. Use of TADDOLs and their derivatives in asymmetric synthesis. Tetrahedron 2008, 64, 1027910317.
(30) Seebach, D.; Beck, A. K.; Heckel, A. TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angew. Chem. Int. Ed. 2001, 40, 92138.
(31) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.
(32) Wu, J. M.; Wang, Q.; Zeng, L.; Chen, Y.; Liu, P.; Yi, H. B. Synthesis, structure and polymorphism of a novel two-dimensional cobalt(II) coordination polymer constructed from citrazinate ligand. Chin. J. Struc. Chem. 2016, 35, 9399.
(33) Yin, X.; Song, Y.; Wang, Y.; Zhang, L.; Li, Q. Synthesis, structure and luminescence properties of metal-organic frameworks based on benzo-bis(imidazole). Sci. China Chem. 2014, 57, 135140.
(34) Xu, Y. C.; Chen, Y.; Li, X.; Yang, Q.; Zhang, J. L.; Xu, H. L.; Zeng, X. S.; Wang, X. C.; Xiao, D. R. Two novel 3D self-threading coordination polymers with CdSO4 topology: syntheses, structures and properties. Inorg. Chem. Commun. 2015, 61, 6467