REFERENCES
(1) Timmons, A. J.; Symes, M. D. Converting between the oxides of nitrogen using metal-ligand coordination complexes. Chem. Soc. Rev. 2015, 44, 6708–6722.
(2) Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.
(3) Xuan, W.; Zhu, C.; Liu, Y.; Yong, C. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 2012, 41, 1677–1695.
(4) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001–1033.
(5) Zhang, W.; Xiong, R. G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195.
(6) Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7647.
(7) Wang, C.; Zhang, T.; Lin, W. Rational synthesis of noncentrosymmetric metal-organic framworks for second-order nonlinear optics. Chem. Rev. 2012, 112, 1084–1104.
(8) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.
(9) Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.
(10) Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.
(11) O′Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures and metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.
(12) Wu, H.; Liu, H. Y.; Yang, J.; Liu, B.; Ma, J. F. An unprecedented 2D→3D metal-organic polyrotaxane framework constructed from cadmium and a flexible star-like ligand. Chem. Commun. 2011, 47, 1818–1820.
(13) Bhardwaj, V. K. Potassium induced stitching of a flexible tripodal ligand into a bi-metallic two-dimensional coordiantion polymer for photo-degradation of organic dyes. Dalton Trans. 2015, 44, 8801–8804.
(14) Zhang, Z. H.; Song, Y.; Okamura, T.; Hasegawa, Y.; Sun, W. Y.; Ueyama, N. Syntheses, structures, near-infrared and visible luminescence, and mangetic properties of lanthanide-organic framworks with an imidazole-containing flexible ligand. Inorg. Chem. 2006, 45, 2896–2902.
(15) Sengupta, S.; Ganguly, S.; Goswami, A.; Bala, S.; Bhattacharya, S.; Mondal, R. Construction of Co(II) coordination polymers comprising of helical units using a flexible pyrazole based ligand. CrystEngComm. 2012, 14, 7428–7437.
(16) Liu, L. L.; Yu, C. X.; Ma, F. J.; Li, Y. R.; Han, J. J.; Liu, L.; Ma, L. F. Structral diversity and photocatalytic properties of Cd(II) coordination polymers constructed by a flexible V-shaped bipydyl benzene ligand and dicarboxylate derivatives. Dalton Trans. 2015, 44, 1636–1645.
(17) Yang, Y.; Du, P.; Liu, Y. Y.; Ma, J. F. A series of coordination polymers constructed by flexible 4-substituted bis(1,2,4-triazole) ligands and polycarboxlate anions: syntheses, structures, and photoluminescent properties. Cryst. Growth Des. 2013, 13, 4781–4795.
(18) Liu, H.; Ma, J.; Liu, Y.; Yang, J. A series of Zn(II) and Cd(II) coordination polymers based on flexible bis-[(pyridyl)-benzimidazole] ligand and different carboxylates: syntheses, structures, and photoluminescent properties. CrystEngComm. 2013, 15, 2699–2708.
(19) Cui, P.; Wu, J.; Zhao, X.; Sun, D.; Zhang, L.; Guo, J.; Sun, D. Two solvent-dependent zinc(II) supramolecular isomers: rare kgd and lonsdaleite network topologies based on a tripodal flexible ligand. Cryst Growth Des. 2011, 11, 5182–5187.
(20) Cui, P.; Dou, J.; Sun, D.; Dai, F.; Wang, S.; Sun, D.; Wu, Q. Reaction vessel- and concentration-induced supramolecular isomerism in layered lanthanide-organic frameworks. CrystEngComm. 2011, 13, 6968–6971.
(21) Dai, F.; Sun, D.; Sun, D. Three 3D lanthanide-organic frameworks based on novel flexible multicarboxylates: from ssa to rtl topologies. Cryst. Growth Des. 2011, 11, 5670–5675.
(22) Dai, F.; He, H.; Xie, A.; Chu, G.; Sun, D.; Ke, Y. Self-assembly of a novel metal-organic coordination cage (MOCC) based on a new flexible discarboxylate ligand: synthesis, crystal structure and magnetic property. CrystEngComm. 2009, 11, 47–49.
(23) Zhao, X.; He, H.; Hu, T.; Dai, F.; Sun, D. Intepenetrating polyhedral MOF with a primitive cubic network based on supermolecular building blocks constructed of a semirigid C3-symmetric carboxylate ligand. Inorg. Chem. 2009, 48, 8057–8059.
(24) Dai, F.; Dou, J.; He, H.; Zhao, X.; Sun, D. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands. Inorg. Chem. 2010, 49, 4117–4124.
(25) Ghosh, S. K.; Zhang, J. P.; Kitagawa, S. Reversible topochemical transformation of a soft crystal of a coordination polymer. Angew. Chem. Int. Ed. 2007, 46, 7965–7968.
(26) Ghosh, S. K.; Kaneko, W.; Kiriya, D.; Ohba, M.; Kitagawa, S. A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations. Angew. Chem. Int. Ed. 2008, 47, 8843–8847.
(27) Ghosh, S. K.; Kitagawa, S. Solvent as structure directing agent for the synthesis of novel coordination frameworks using a tripodal flexible ligand. CrystEngComm. 2008, 10, 1739–1742.
(28) Han, Z. B.; Zhang, G. X.; Zeng, M. H.; Ge, C. H.; Zou, X. H.; Han, G. X. Synthesis, crystal structure and magnetic properties of two 3-D gadolinium complexes. CrystEngComm. 2009, 11, 2629–2633.
(29) Han, Z. B.; Zhang, G. X. Solvothermal synthesis of two unique metal-organic frameworks: a 3-fold interpenetrating (3,4,5)-connected network and a 2-fold interpenetrating (4,5)-connected network. CrystEngComm. 2010, 12, 348–351.
(30) Han, Z. B.; Zhang, G. X.; Zeng, M. H.; Yuan, D. Q.; Fang, Q. R.; Li, J. R.; Ribas, J.; Zhou, H. C. Unprecedented marriage of a cationic pentanuclear cluster and a 2D polymeric anionic layer based on a flexible tripodal ligand and a CuII ion. Inorg. Chem. 2010, 49, 769–771.
(31) Zhang, M. Y.; Shan, W. J.; Han, Z. B. Syntheses and magnetic properties of three Mn(II) coordination polymers based on a tripodal flexible ligand. CrystEngComm. 2012, 14, 1568–1574.
(32) Li, H.; Zhao, B.; Ding, R.; Jia, Y.; Hou, H.; Fan, Y. Structure diversity for a series of novel Zn metal-organic frameworks based on different secondary building units. Cryst. Growth Des. 2012, 12, 4170–4179.
(33) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination. University of Gottingen, Germany 1997.
(34) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. University of Gottingen, Germany 1997.
(35) Ke, C. H.; Lee, H. M. Nickel coordination polymers with {48•62} and bnn topologies constructed from common square-pyramidal 5-connected nodes. CrystEngComm. 2012, 14, 4157–4160.
(36) Li, C. P.; Chen, J.; Li, P. W.; Du, M. Structural diversity and fluorescent properties of CdII coordiantion polymers with 5-halonicotinates regulated by solvent and ligand halogen-substituting effect. CrystEngComm. 2013, 15, 9713–9721.
(37) Han, R. M.; Ma, J. F.; Liu, Y. Y.; Yang, J. Syntheses, structures, and photoluminescent properties of coordination polymers based on a new 2΄-carboxybipehenyl-4-ylmethylaminodiacetic acid and different N-donor ligands. CrystEngComm. 2013, 15, 5641–5653.
(38) Yang, D. L.; Zhang, X.; Yao, Y. G.; Zhang, J. Structure versatility of coordination polymers constructed from a semirigid ligand and polynuclear metal clusters. CrystEngComm. 2014, 16, 8047–8057.
(39) Mukherjee, G.; Biradha, K. Modulation of breathing behavior of layered coordination polymers via a solid solution approach: the influence of metal ions on sorption behavior. Chem. Commun. 2014, 50, 670–672.
(40) Blatov, V. A. TOPOS, A Multipurpose Crystallochemical Analysis with the Program Package. Samara State University, Russia 2009.
(41) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.
(42) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.
(43) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.
(44) Wan, X.; Jiang, F.; Chen, L.; Wu, M.; Zhang, M.; Pan, J.; Su, K.; Yang, Y.; Hong, M. Structural diversity modulated by the ratios of a ternary solvent mixture: syntheses, structures, and luminescent properties of five zinc(II) metal-organic frameworks. Cryst. Growth Des. 2015, 15, 1481–1491.
(45) Xu, W.; Zhou, Y.; Huang, D.; Su, M.; Wang, K.; Hong, M. A highly sensitive and selective fluorescent sensor for detection of Al3+ using a europium(III) quinolinecarboxylate. Inorg. Chem. 2014, 53, 6497–6499.
(46) Liu, T.; Zhang, W.; Sun, W.; Cao, R. Conjugated ligands modulated sandwich structures and luminescence properties of lanthanide metal-organic frameworks. Inorg. Chem. 2011, 50, 5242–5248. |