Complexes Supported by Pyrrolide Ligands:Syntheses, Structures and Catalytic Behaviors towards the Ring-opening Polymerization of ε-Caprolactone
裴浩;陆宁;刘玮;陈砚美;吴冰;李海燕;李亚红;李武
a (College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China)
b (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China)
Complexes Supported by Pyrrolide Ligands:Syntheses, Structures and Catalytic Behaviors towards the Ring-opening Polymerization of ε-Caprolactone
PEI Hao;LU Ning; LIU Wei;CHEN Yan-Mei;WU Bing;LI Hai-Yan;LI Ya-Hong;LI Wu
a (College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China)
b (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China)
The syntheses, structures and catalytic activities of two yttrium complexes sup- ported by pyrrolide ligands are reported. Treatment of Y(N(SiMe3)2)3 with one equivalent of H3bptd (H3bptd = 1,9-bis(2-pyrrolyl)-2,5,8-triazanona-1,8-diene) in THF gave a complex of composition [Y(bptd)(THF)]2 (1). Reaction of Y(N(SiMe3)2)3 with one equivalent of H3tpa (H3tpa = tris(pyrrolyl--methyl)amine) in THF generated [Y(tpa)(THF)3] (2) in good yield. Complexes 1 and 2 have been characterized by single-crystal X-ray diffraction, elemental analyses and NMR spectroscopy. Complex 1 is dinuclear. The two metal centers are doubly bridged by two amine nitrogen atoms to form a Y–N–Y–N four-membered rhombus ring. The geometries of Y3+ ions in 1 and 2 are well described as pentagonal bipyramid and capped octahedron, respectively. The ring-opening polymerization reactions of -caprolactone initiated by 1 and 2, respectively, were investigated. They both exhibited good catalytic activity for the polymerization of -caprolactone. All of the obtained polymers have high molecular weights and relatively narrower PDIs. The polymers generated by 2 possessed polydispersity close to 1.1. The good catalytic activities of 1 and 2 reveal their potential applications in polymer industry.
The syntheses, structures and catalytic activities of two yttrium complexes sup- ported by pyrrolide ligands are reported. Treatment of Y(N(SiMe3)2)3 with one equivalent of H3bptd (H3bptd = 1,9-bis(2-pyrrolyl)-2,5,8-triazanona-1,8-diene) in THF gave a complex of composition [Y(bptd)(THF)]2 (1). Reaction of Y(N(SiMe3)2)3 with one equivalent of H3tpa (H3tpa = tris(pyrrolyl--methyl)amine) in THF generated [Y(tpa)(THF)3] (2) in good yield. Complexes 1 and 2 have been characterized by single-crystal X-ray diffraction, elemental analyses and NMR spectroscopy. Complex 1 is dinuclear. The two metal centers are doubly bridged by two amine nitrogen atoms to form a Y–N–Y–N four-membered rhombus ring. The geometries of Y3+ ions in 1 and 2 are well described as pentagonal bipyramid and capped octahedron, respectively. The ring-opening polymerization reactions of -caprolactone initiated by 1 and 2, respectively, were investigated. They both exhibited good catalytic activity for the polymerization of -caprolactone. All of the obtained polymers have high molecular weights and relatively narrower PDIs. The polymers generated by 2 possessed polydispersity close to 1.1. The good catalytic activities of 1 and 2 reveal their potential applications in polymer industry.
裴浩;陆宁;刘玮;陈砚美;吴冰;李海燕;李亚红;李武. Complexes Supported by Pyrrolide Ligands:Syntheses, Structures and Catalytic Behaviors towards the Ring-opening Polymerization of ε-Caprolactone[J]. 结构化学, 2016, 35(7): 1085-1092.
PEI Hao;LU Ning; LIU Wei;CHEN Yan-Mei;WU Bing;LI Hai-Yan;LI Ya-Hong;LI Wu. Complexes Supported by Pyrrolide Ligands:Syntheses, Structures and Catalytic Behaviors towards the Ring-opening Polymerization of ε-Caprolactone. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35(7): 1085-1092.
REFERENCES
(1) John Wiley and Sons Inc.; R. Auras ed. Poly(lactic acid): synthesis, structures, properties, processing and applications. Hoboken: NJ 2010.
(2) (a) Ha, C. S.; Gardella, J. A. Surface chemistry of biodegradable polymers for drug delivery systems. Chem. Rev. 2005, 105, 42054232. (b) Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835864. (c) Albertsson, A. C.; Varma, I. K. Recent developments in ring opening polymerization of lactones for biomedical application materials. Biomacromolecules 2003, 4, 14661486.
(3) (a) Zhang, W. J.; Liu, S. F.; Yang, W. H.; Hao, X.; Glaser, R.; Sun, W. H. Chloroyttrium 2-(1-(arylimino)alkyl)quinolin-8-olate complexes: synthesis, characterization, and catalysis of the ring-opening polymerization of ε-caprolactone. Organometallics 2012, 31, 81788188. (b) Dubois, P.; Degee, P.; Jerome, R.; Teyssie, P. Macromolecular engineering of polylactones and polylactides. 11. Synthesis and use of alkylaluminum dialkoxides and dithiolates, as promoters of hydroxyl telechelic poly(ε-caprolactone) and α,ω-dihydroxy triblock copolymers containing outer polyester blocks. Macromolecules 1993, 26, 27302735.
(4) (a) Edelmann, F. T. Lanthanide amidinates and guanidinates in catalysis and materials science: a continuing success story. Chem. Soc. Rev. 2012, 41, 76577672. (b) Della Monica, F.; Luciano, E.; Roviello, G.; Grassi, A.; Milione, S.; Capacchione, C. Group 4 metal complexes bearing thioetherphenolate ligands: coordination chemistry and ring-opening polymerization catalysis. Macromolecules 2014, 47, 28302841.
(5) Sanchez-Barba, L. F.; Hughes, D. L.; Humphrey, S. M.; Bochmann, M. Ligand transfer reactions of mixed-metal lanthanide/magnesium allyl complexes with β-diketimines: synthesis, structures, and ring-opening polymerization catalysis. Organometallics 2006, 25, 10121021.
(6) Qi, C. Y.; Wang, Z. X. Synthesis and characterization of aluminum(III) and tin(II) complexes supported by diiminophosphinate ligands and their application in ring-opening polymerization catalysis of ε-caprolactone. J. Poly. Sci., Part A: Poly. Chem. 2006, 44, 46214631.
(7) (a) Liang, L. C.; Lin, S. T.; Chien, C. C.; Chen, M. T. Zirconium and hafnium complexes containing N-alkyl substituted amine biphenolate ligands: coordination chemistry and living ring-opening polymerization catalysis. Dalton Trans. 2013, 42, 92869293. (b) Liang, L. C.; Lin, S. T.; Chien, C. C. Titanium complexes of tridentate aminebiphenolate ligands containing distinct N-alkyls: profound N-substituent effect on ring-opening polymerization catalysis. Inorg. Chem. 2013, 52, 17801786. (c) Schwarz, A. D.; Herbert, K. R.; Paniagua, C.; Mountford, P. Ligand variations in new sulfonamide-supported group 4 ring-opening polymerization catalysts. Organometallics 2010, 29, 41714188. (d) Webster, R. L.; Noroozi, N.; Hatzikiriakos, S. G.; Thomson, J. A.; Schafer, L. L. Titanium pyridonates and amidates: novel catalysts for the synthesis of random copolymers. Chem. Commun. 2013, 49, 5759. (e) Zhao, J. J.; Pei, H.; Chen,Y. M.; Lu, N.; Liu, J. N.; Hu, J. F.; Liu, W.; Li, W.; Li, Y. H. Bis(2-cycloazylindolyl)titanium complexes: synthesis, characterization, and the catalytic behaviors towards hydroamination and ring-opening polymerization of ε-caprolactone Z. Anorg. Allg. Chem. 2015, 641, 13221328. (f) Liu, J. N.; Cao, Y. H.; Li, L.; Pei, H.; Chen, Y. M.; Hu, J. F.; Qin, Y. R.; Li, Y. H.; Li, W.; Liu, W. Titanium complexes supported by imidazo[1,5-a]pyridine-containing pyrrolyl ligand as catalysts for hydroamination and polymerization reactions, and as an antitumor reagent. RSC Adv. 2015, 5, 1031810325.
(8) Liang, L. C.; Tsai, T. L.; Li, C. W.; Hsu, Y. L.; Lee, T. Y. Synthesis, structure, and ring-opening polymerization catalysis of zinc complexes containing amido phosphinimine ligands. Eur. J. Inorg. Chem. 2011, 2011, 29482957.
(9) (a) Gu, Z. H.; Li, L.; Bao, Q. W.; Yuan, F. G. Lanthanocene diolate complexes: synthesis, structures and catalytic property for ε-caprolactone polymerization. Chin. J. Chem. 2015, 33, 563567. (b) Deng, L. Q.; Zhou, Y. X.; Tao, X.; Wang, Y. L.; Hu, Q. S.; Jin, P.; Shen, Y. Z. Synthesis and structure of amine-bridged bis(phenolate) lanthanide complexes and their application in the polymerization of ε-caprolactone. J. Organomet. Chem. 2014, 749, 356363. (c) Schmid, M.; Guillaume, S. M.; Roesky, P. W. 2,5-Bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrolyl borohydride complexes of the divalent lanthanides – synthesis, structures and ring-opening polymerization of ε-caprolactone. J. Organomet. Chem. 2013, 744, 6873.
(10) (a) Kempe, R. Rare earth polymerization catalysts supported by bulky aminopyridinato ligands. Z. Anorg. Allg. Chem. 2010, 636, 21352147. (b) Collins, S. Polymerization catalysis with transition metal amidinate and related complexes. Coord. Chem. Rev. 2011, 255, 118138.
(11) (a) Odom, A. L. New C–N and C–C bond forming reactions catalyzed by titanium complexes. Dalton Trans. 2005, 225233. (b) Zi, G. F.; Liu, X.; Xiang, L.; Song, H. B. Synthesis of group 4 metal amides with new chiral biaryldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization. Organometallics 2009, 28, 11271137. (c) Li, Y.; Shi, Y.; Odom, A. L. Titanium hydrazido and imido complexes: synthesis, structure, reactivity, and relevance to alkyne hydroamination. J. Am. Chem. Soc. 2004, 126, 17941803. (d) Zi, G.; Zhang, F.; Xiang, L.; Chen, Y.; Fang, W.; Song, H. Synthesis and characterization of group 4 metal amides with new C2-symmetric binaphthyldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization. Dalton Trans. 2010, 39, 40484061. (e) Yang, Y.; Li, S. H.; Cui, D. M.; Hen, X. S.; Jing, X. B. Pyrrolide-ligated organoyttrium complexes: synthesis, characterization, and lactide polymerization behavior. Organometallics 2007, 26, 671678.
(12) Swartz, D. L. II; Odom, A. L. Synthesis, structure, and hydroamination kinetics of (2,2΄-diaryldipyrrolylmethane)- and bis(2-arylpyrrolyl)titanium complexes. Organometallics 2006, 25, 61256133.
(13) (a) Zhou, F. Y.; Wu, J.; Lin, M. S.; Zhao, Y.; Wu, J.; Zhang, Y.; Li, W.; Li, Y. H. Synthesis, structural characterization, and catalytic activity of scandium, samarium, and dysprosium complexes supported by tris(pyrrolyl-α-methyl)amine ligand. Z. Anorg. Allg. Chem. 2011, 637, 117121. (b) Zhou, F. Y.; Zhang, S. Y.; Zhao, Y.; Zhang, C. G.; Cheng, X. J.; Zheng, L. N.; Zhang, Y.; Li, Y. H. Dinuclear dysprosium and ytterbium complexes incorporating N,N-bis(pyrrolyl-α-methyl)-N-methylamine ligand: syntheses and structures. Z. Anorg. Allg. Chem. 2009, 635, 26362641. (c) Zhou, F. Y.; Lin, M. S.; Li, L.; Zhang, X. Q.; Chen, Z.; Li, Y. H.; Zhao, Y.; Wu, J.; Qian, G. M.; Hu, B.; Li, W. Heterobimetallic samarium(III) and titanium(IV) complexes with bifunctional catalytic properties. Organometallics 2011, 30, 12831286. (d) Zhang X. Q.; Lin, M. S.; Hu, B.; Chen, W. Q.; Zheng, L. N.; Wu, J.; Chen, Y. M.; Zhou, F. Y.; Li, Y. H.; Li, W. Anionic lanthanide complexes supported by a pyrrole-based tetradentate Schiff base ligand: synthesis, structures and catalytic activity toward the polymerization of ε-caprolactone. Polyhedron 2012, 33, 273279.
(14) Shi, Y. H.; Cao, C. S.; Odom, A. L. Synthesis and group 4 complexes of tris(pyrrolyl-α-methyl)amine. Inorg. Chem. 2004, 43, 275281.
(15) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany 1997.
(16) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data. University of Göttingen, Germany 1997.
(17) Westerhausen, M.; Hartmann, M.; Pfitzner, A.; Schwarz, W. Bis(trimethylsilyl)amide und methanide des yttriums-molekülstrukturen von tris(diethylether-O)lithium-(μ-chloro)-tris[bis(trimethylsilyl)methyl]yttriat, solvensfreiem yttrium-tris [bis(trimethylsilyl)amid] sowie dem bis(benzonitril)-komplex. Z. Anorg. Allg. Chem. 1995, 621, 837850.
(18) Arndt, S.; Trifonov, A.; Spaniol, T. P.; Okuda, J.; Kitamura, M.; Takahashi, T. Metalation of aromatic heterocycles by yttrium alkyl complexes that contain a linked amido-cyclopentadienyl ligand: synthesis, structure and Lewis base adduct formation. J. Organomet. Chem. 2002, 647, 158166.
(19) Kuo, P. C.; Chang, J. C.; Lee, W. Y.; Lee, H. M.; Huang, J. H. Synthesis and characterization of lithium and yttrium complexes containing tridentate pyrrolyl ligands. Single-crystal X-ray structures of {Li[C4H2N(CH2NMe2)2-2,5]}2 (1) and {[C4H2N(CH2NMe2)2-2,5]YCl2(μ-Cl)•Li(OEt2)2}2 (2) and ring-opening polymerization of ε-caprolactone. J. Organomet. Chem. 2005, 690, 41684174.
(20) Matsuo, Y.; Mashima, K.; Tani, K. Selective formation of homoleptic and heteroleptic 2,5-bis(N-aryliminomethyl)pyrrolyl yttrium complexes and their performance as initiators of ε-caprolactone polymerization. Organometallics 2001, 20, 35103518.
(21) Yang, Y.; Cui, D. M.; Chen, X. S. The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of C=N and C=O double bonds into Ln-C σ bonds. Dalton Trans. 2010, 39, 39593967.
(22) Zi, G. F.; Xiang, L.; Liu, X.; Wang, Q. W.; Song, H. B. Synthesis, structure, and reactivity of yttrium complexes with chiral biaryldiamine-based N4-ligands. Inorg. Chem. Commun. 2010, 13, 445448.
(23) Zhou, S. L.; Yin, C. W.; Wang, H.; Zhu, X. C.; Yang, G. S.; Wang, S. W. Synthesis, characterization, and catalytic activities of rare-earth metal complexes with iminopyrrolyl ligands. Inorg. Chem. Commun. 2011, 14, 11961200.
(24) Broomfield, L. M.; Wright, J. A.; Bochmann, M. Synthesis, structures and reactivity of 2-phosphorylmethyl-1H-pyrrolato complexes of titanium, yttrium and zinc. Dalton Trans. 2009, 82698279.
(25) Zi, G. F.; Xiang, L.; Song, H. B. Enantioselective hydroamination/cyclization catalyzed by organolanthanide amides derived from a new chiral ligand, (S)-2-(prrol-2-ylmethyleneamino)-2′-(dimethylamino)-1,1΄-binaphthyl. Organometallics 2008, 27, 12421246.
(26) Wang, Q. W.; Xiang, L.; Song, H. B.; Zi, G. F. Synthesis of amidolanthanides with new chiral biaryl-based NNO ligands and their use as catalysts for enantioselective hydroamination/cyclization. Inorg. Chem. 2008, 47, 43194328.
(27) Zi, G. F.; Wang, Q. W.; Xiang, L.; Song, H. B. Lanthanide and group 4 metal complexes with new chiral biaryl-based NNO-donor ligands. Dalton Trans. 2008, 59305944.
(28) Meyer, N.; Kuzdrowska, M.; Roesky, P. W. (2,5-Bis{[(2,6-diisopropylphenyl)imino]methyl}pyrrolyl)yttrium and lutetium complexes: synthesis and structures. Eur. J. Inorg. Chem. 2008, 14751479.
(29) Wang, Q. W.; Xiang, L.; Zi, G. F. Synthesis, structural characterization, and reactivity of organolanthanides derived from a new chiral ligand (S)-2-(pyrrol-2-ylmethyleneamino)-2΄-hydroxy-1,1΄-binaphthyl. J. Organomet. Chem. 2008, 693, 6876.
(30) Xiang, L.; Wang, Q. W.; Song, H. B.; Zi, G. F. Synthesis, structural characterization, and reactivity of organolanthanides derived from a new chiral ligand, (R)-bis(pyrrol-2-ylmethyleneamino)-1,1΄-binaphthyl. Organometallics 2007, 26, 53235329.
(31) Hao, J. J.; Li, J. F.; Cui, C. M.; Roesky, H. W. Synthesis and characterization of heterobimetallic oxo-bridged aluminum-rare earth metal complexes. Inorg. Chem. 2011, 50, 74537459.
(32) Freedman, D. E.; Harman, W. H.; Harris, T. D.; Long, G. J.; Chang, C. J.; Long, J. R. Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 2010, 132, 12241225.
(33) Harman, W. H.; Harris, T. D.; Freedman, D. E.; Fong, H.; Chang, A.; Rinehart, J. D.; Ozarowski, A.; Sougrati, M. T.; Grandjean, F.; Long, G. J.; Long, J. R.; Chang, C. J. Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. J. Am. Chem. Soc. 2010, 132, 1811518125.
(34) Piro, N. A.; Lichterman, M. F.; Harman, W. H.; Chang, C. J. A structurally characterized nitrous oxide complex of vanadium. J. Am. Chem. Soc. 2011, 133, 21082111.
(35) Harman, W. H.; Chang, C. J. N2O activation and oxidation reactivity from a non-heme iron pyrrole platform. J. Am. Chem. Soc. 2007, 129, 1512815129.
(36) Kowalski, A.; Duda, A.; Penczek, S. Polymerization of l,l-lactide initiated by aluminum isopropoxide trimer or tetramer. Macromolecules 1998, 31, 21142122.