REFERENCES
(1) Wang, M. M.; Duan, Y. C.; Ye, X. W.; Ren, J. L.; Yu, B.; Zhang, E.; Liu, H. M. Design, synthesis and antitumor study of novel 1,4-bispiperazine-carbodithioic acid [1-substituted-(1,2,3-triazole)-4]-methyl esters. Chin. J. Org. Chem. 2013, 33, 2384–2390.
(2) Demchuk, D. V.; Samet, A. V.; Chernysheva, N. B.; Ushkarov, V. I.; Stashina, G. A.; Konyushkin, L. D.; Raihstat, M. M.; Firgang, S. I.; Philchenkov, A. A.; Zavelevich, M. P.; Kuiava, L. M.; Chekhun, V. F.; Blokhin, D. Y.; Kiselyov, A. S.; Semenova, M. N.; Semenov, V. V. Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines. Bioorg. Med. Chem. 2014, 22, 738–755.
(3) Alvarez, R.; Velazquez, S.; San, F.; Aquaro, S.; De, C.; Perno, C. F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. 1,2,3-Triazole-[2,5-bis-O-
(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3΄-spiro-5΄΄-(4΄΄-amino-1΄΄,2΄΄-oxathiole 2΄΄,2΄΄-dioxide) (TSAO) analogs: synthesis
and Anti-HIV-1 activity. J. Med. Chem. 1994, 37, 4185–4194.
(4) Velaquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M. J. Regiospecific synthesis and anti-human immuno-deficiency virus activity of novel 5-substituted N-alkylcarbamoyl and N,N-dialkyl carbamoyl 1,2,3-triazole-TSAO analogues anti-human. Antiviral Chem. Chemother. 1998, 9, 481–489.
(5) Reddy, L. V. R.; Mishra, N. N.; Shukla, P. K.; Yadav, G.; Srivastava, R.; Shaw, A. K. Synthesis and biological evaluation of glycal-derived novel tetrahydrofuran 1,2,3-triazoles by “click” chemistry. Carbohydr. Res. 2010, 345, 1515–1521.
(6) Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl) oxazolidinones with expanded activity against the fastidious gram-negative organisms haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem. 2000, 43, 953–970.
(7) Wilkinson, B. L.; Long, H.; Sim, E.; Fairbanks, A. J. Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett. 2008, 18, 6265–6267.
(8) Singh, B. K.; Yadav, A. K.; Kumar, B.; Gaikwad, A.; Sinha, S. K.; Chaturvedi, V.; Tripathi, R. P. Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr. Res. 2008, 343, 1153–1162.
(9) Muhannad, N. A.; Khawaja, A. Y.; Muhammad, N. T.; Ifzan, A.; Murtaza, M. One-pot synthesis, crystal structures and antimicrobial activities of two new 1,4-disubstituted 1,2,3-triazole-4-carboxylates. Chin. J. Struct. Chem. 2015, 34, 26–32.
(10) a) Cain, B. F.; Atwell, G. J.; Denny, W. A. Potential antitumor agents. 16.4΄-(acridin-9-ylamino) methanesulfonanilide. J. Med. Chem. 1975, 18, 1110–1117. b) Denny, W. A.; Baguley, B. C. Dual topoisomerase I/II inhibitors in cancer therapy. Current Topic. In Med. Chem. 2003, 3, 339–353. c) Denny, W. A. Acridine derivatives as chemotherapeutic agents. Cur. Med. Chem. 2002, 9, 1655–1665. d) Galy, J. P.; Morel, S.; Boyer, G.; Elguero, J. Tetracyclic derivatives of acridine. Heterofused acridines. J. Heterocyclic Chem.1996, 33, 1551–1560.
(11) Gamage, S. A.; Tepsiri, N.; Wilairat, P. S.; Wojcik, J.; Figgit, D. P.; Ralph, R.; Denny, W. A. Synthesis and in vitro evaluation of 9-anilino-3,6-diaminoacridines active against a multidrug-resistant strain of the malaria parasite plasmodium falciparum. J. Med. Chem. 1994, 37, 1486–1494.
(12) Gamage, S. A.; Figgit, D. P.; Wojcik, S. J.; Ralph, R. K.; Ransijn, A.; Mauel, J.; Yardley, V.; Snowdon, D.; Croft, S. L.; Denny, W. A. Structure-activity relationships for the antileishmanial and antitrypanosomal activities of 1΄-substituted 9-anilinoacridines. J. Med. Chem. 1997, 40, 2634–2642.
(13) Mauel, J.; Denny, W. A.; Gamage, S. A.; Ransijn, A.; Wojcik, S. L.; Figgit, D. P.; Palph, R. 9-Anilinoacridines as potential antileishmanial agents. Antimicrob.Agents Chemother. 1993, 37, 991–996.
(14) Belmont, P.; Bosson, J.; Godet, T.; Tiano, M. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med. Chem. 2007, 7, 139–169.
(15) Bruker. APEXII Software, Version 6.3.1, Bruker AXS Inc, Madison, Wisconsin, USA 2004.
(16) Sheldrick, G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Refinement. University of Göttingen, Germany 1997.
(17) Ma, Z.; Liu, S. X. Syntheses and crystal structures of 4,4΄-diformyl-diphenoxyethane and 4,4΄,4΄΄-triformyl-triphenoxytriethylamine. Chin. J. Struct. Chem. 2002, 21, 533–537.
(18) Luo, M.; Ma, H. Z.; Su, Q. D.; Li, Q. R. Synthesis and crystal structure of 6-bromo-piperonal-dimethyl-acetal. Chin. J. Struct. Chem. 2002, 21, 538–540.
(19) Xu, W.; Shao, B. H.; Xu, X. J.; Jiang, R. W.; Yuan, M. Structural analysis of (S)-1-((1H-benzo[d][1,2,3]triazol-1-yl)oxy)-3-(4-(2- methoxyphenyl)piperazin-1-yl)propan-2-ol and binding mechanism with alpha(1A)-adrenoceptor: TDDFT calculations, X-ray crystallography and molecular docking. J. Mol. Struct. 2016, 1106, 485–490. |