REFERENCES
(1) Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225273.
(2) de la Pena O'Shea, V. A.; Gonzalez, S.; Illas, F.; Fierro, J. L. G. Evidence for spontaneous CO2 activation on cobalt surfaces. Chem. Phys. Lett. 2008, 454, 262268.
(3) Ding, X.; De Rogatis, L.; Vesselli, E.; Baraldi, A.; Comelli, G.; Rosei, R.; Savio, L.; Vattuone, L.; Rocca, M.; Fornasiero, P.; Ancilotto, F.; Baldereschi, A.; Peressi, M. Interaction of carbon dioxide with Ni(110): a combined experimental and theoretical study. Phys. Rev. B 2007, 76, 195425195437.
(4) Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Chemisorption of CO2 on nickel surfaces. J. Phys. Chem. B 2005, 109, 1895618963.
(5) Bartos, B.; Freund, H. J.; Kuhlenbeck, H.; Neumann, M.; Lindner, H.; Müller, K. Adsorption and reaction of CO2 and CO2/O CO-adsorption on Ni(110): angle resolved photoemission (ARUPS) and electron energy loss (HREELS) studies. Surf. Sci. 1987, 179, 5989.
(6) Wang, G. C.; Nakamura, J. Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: a DFT study. J. Phys. Chem. Lett. 2010, 1, 30533057.
(7) Wang, G. C.; Ling, J.; Morikawa, Y.; Nakamura, J.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z. Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(Hkl) surfaces. Surf. Sci. 2004, 570, 205217.
(8) Funk, S.; Hokkanen, B.; Wang, J.; Burghaus, U.; Bozzolo, G.; Garces, J. E. Adsorption dynamics of CO2 on Cu(110): a molecular beam study. Surf. Sci. 2006, 600, 583590.
(9) Glezakou, V. A.; Dang, L. X. Spontaneous activation of CO2 and possible corrosion pathways on the low-index iron surface Fe(100). J. Phys. Chem. C 2009, 113, 36913696.
(10) Ge, Q. F.; Neurock, M. Adsorption and activation of Co over flat and stepped Co surfaces: a first principles analysis. J. Phys. Chem. B 2006, 110, 1536815380.
(11) Liu, C.; Cundari, T. R.; Wilson, A. K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: in comparison with homogeneous catalysis. J. Phys. Chem. C 2012, 116, 56815688.
(12) Hess, G.; Baumgartner, C.; Froitzheim, H. Adsorption sites and microstructures of CO2 on Fe(111) derived from specular and off-specular HREELS. Phys. Rev. B 2001, 63, 165416-165423.
(13) Behner, H.; Spiess, W.; Wedler, G.; Borgmann, D. Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111). Surf. Sci. 1986, 175, 276286.
(14) Rasmussen, P. B.; Taylor, P. A.; Chorkendorff, I. The interaction of carbon dioxide with Cu(100). Surf. Sci. 1992, 269/270, 352359.
(15) Hadenfeldt, S.; Benndorf, C.; Stricker, A.; Towe, M. Adsorption of CO2 on K-promoted Cu(111) surfaces. Surf. Sci. 1996, 352, 295299.
(16) Taylor, P. A.; Rasmussen, P. B.; Chorkendorff, I. Carbon dioxide chemistry on Cu(100). J. Vac. Sci. Technol., A 1992, 10, 25702575.
(17) Ernst, K. H.; Schlatterbeck, D.; Christmann, K. Adsorption of carbon dioxide on Cu(110) and on hydrogen and oxygen covered Cu(110) surfaces. Phys. Chem. Chem. Phys. 1999, 1, 41054112.
(18) Nerlov, J.; Chorkendorff, I. Promotion through gas phase induced surface segregation: methanol synthesis from CO, CO2 and H2 over Ni/Cu(100). Catal. Lett. 1998, 54, 171176.
(19) Nerlov, J.; Chorkendorff, I. Methanol synthesis from CO2, CO, and H2 over Cu(100) and Ni/Cu(100). J. Catal. 1999, 181, 271279.
(20) Nerlov, J.; Sckerl, S.; Wambach, J.; Chorkendorff, I. Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Appl. Catal. A: General 2000, 191, 97109.
(21) Yang, Y. X.; White, M. G.; Liu, P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J. Phys. Chem. C 2011, 116, 248256.
(22) Kresse, G.; Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558561.
(23) Kresse, G.; Hafner, J. Ab initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B 1993, 48, 1311513118.
(24) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 1425114269.
(25) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 17581775.
(26) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 1795317979.
(27) Hafner, J. Ab-initio simulations of materials using Vasp: density-functional theory and beyond. J. Comput. Chem. 2008, 29, 20442078.
(28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 38653868.
(29) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 51885192.
(30) Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 86178624.
(31) Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 54615466.
(32) Maintz, S; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 25572567. |