A typical nitroimine bistriazole (DNABT) was synthesized with high yield (90.4%) by nitration reaction from DABT in HNO3 and NH4NO3. Furthermore, a novel cocrystal (1) consisting of DNABT, H2O and DMSO in a 1:2:2 molar ratio was analysized on the crystal structure. Cocrystal 1 crystallizes in the triclinic system, space group P with a = 6.3124(18), b = 8.233(2), c = 9.775(3) Å, β = 98.326(4)°, V = 481.59(74) Å3, Z = 2, Dc = 1.55 g/cm3, F(000) = 234, μ = 0.337 mm-1, S = 1.078, the final R = 0.0609 and wR = 0.2743. Additionally, the crystal structure is built up by four strong and seven weak hydrogen bonds. And the hydrogen bond network contributes to the stability of DNABT molecule. Typical TGA and DSC curves indicate the cocrystal 1 includes one endothermic and one exothermic decomposition processes, and the peak temperature at each process is 164.0 and 245.0 oC. The nonisothermal decomposition kinetics analysis was performed by means of the Kissinger and Ozawa methods. The apparent activation energy (Ea) and pre-exponential factor (A) of the two decompositions are 96.0 kJ•mol-1, 108.1 s-1 and 215.8 kJ•mol-1, 1018.9 s-1, respectively.
A typical nitroimine bistriazole (DNABT) was synthesized with high yield (90.4%) by nitration reaction from DABT in HNO3 and NH4NO3. Furthermore, a novel cocrystal (1) consisting of DNABT, H2O and DMSO in a 1:2:2 molar ratio was analysized on the crystal structure. Cocrystal 1 crystallizes in the triclinic system, space group P with a = 6.3124(18), b = 8.233(2), c = 9.775(3) Å, β = 98.326(4)°, V = 481.59(74) Å3, Z = 2, Dc = 1.55 g/cm3, F(000) = 234, μ = 0.337 mm-1, S = 1.078, the final R = 0.0609 and wR = 0.2743. Additionally, the crystal structure is built up by four strong and seven weak hydrogen bonds. And the hydrogen bond network contributes to the stability of DNABT molecule. Typical TGA and DSC curves indicate the cocrystal 1 includes one endothermic and one exothermic decomposition processes, and the peak temperature at each process is 164.0 and 245.0 oC. The nonisothermal decomposition kinetics analysis was performed by means of the Kissinger and Ozawa methods. The apparent activation energy (Ea) and pre-exponential factor (A) of the two decompositions are 96.0 kJ•mol-1, 108.1 s-1 and 215.8 kJ•mol-1, 1018.9 s-1, respectively.
郭涛;黄晓川;唐望;王子俊;刘敏;邱少君. Crystal Structure and Thermal Behavior of a Novel Cocrystal Consisting of 3,3΄-Dinitrimino- 5,5΄-Bis(1H-1,2,4-triazole), H2O and (CH3)2SO[J]. 结构化学, 2016, 35(4): 537-544.
GUO Tao;HUANG Xiao-Chuan;TANG Wang;WANG Zi-Jun;LIU Min;QIU Shao-Jun. Crystal Structure and Thermal Behavior of a Novel Cocrystal Consisting of 3,3’-Dinitrimino-5,5’-bis(1H-1,2,4-triazole), H2O and (CH3)2SO. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35(4): 537-544.
REFERENCES
(1) Dippold, A. A.; Izsák, D.; Klapötke, T. M. A study of 5-(1,2,4-triazol-c-yl) tetrazol-1-ols: combining the benefits of different heterocycles for the design of energetic materials. Chem. Eur. J. 2013, 19, 12042–12051.
(2) Dippold, A. A.; Klapötke, T. M.; Oswald, M. Asymmetrically substituted 5,5΄-bistriazoles-nitrogen rich materials with various energetic functionalities. Dalton Trans. 2013, 42, 11136–11145.
(3) Dippold, A. A.; Klapötke, T. M. Synthesis and characterization of 5-(1,2,4-triazol-3-yl) tetrazoles with various energetic functionalities. Chem Asia J. 2013, 8, 8463–8471.
(4) Wang, R.; Xu, H.; Guo, Y.; Sa, R.; Shreeve, J. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J. Am. Chem. Soc. 2010, 132, 11904–11905.
(5) Klapötke, T. M.; Schmid, P. C.; Schnell, S.; Stierstorfer, J. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4,4΄,5,5΄-tetraamino-3, 3΄-bi-1, 2, 4-triazolium cation. J. Mater. Chem. A 2015, 3, 2658–2668.
(6) Dippold, A. A.; Klapötke, T. M. Nitrogen-rich bis-1,2,4-triazoles-a comparative study of structural and energetic properties. Chem. Eur. J. 2012, 18 , 16742–16753.
(7) Dachs, M.; Dippold, A. A.; Gaar, J.; Holler, M.; Klapötke, T. M. A comparative study on insensitive energetic derivatives of 5-(1,2,4-triazol-c-yl)-tetrazoles and their 1-hydroxy-tetrazole analogues. Z. Anorg. Allg. Chem. 2013, 630, 2171–2180.
(8) Landenberger, K. B.; Matzger, A. J. Cocrystals of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des. 2012, 12, 3603–3609.
(9) Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20: HMX. Cryst Growth Des. 2012, 12, 4311–4314.
(10) Bolton, O.; Matzger, A. J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed. 2011, 50, 8960–8963.
(11) Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal Chem. 1957, 29, 1702–1706.
(12) Ozawa, T. Initial kinetic parameters from thermogravimetric rate and conversion data. Bull Chem. Soc. Jpn. 1965, 38, 1881–1886.
(13) Sheldrick, G. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.
(14) Sheldrick, G. SHELXL-97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.
(15) Metelkina, E.; Novikova, T.; Berdonosova, S.; Berdonosov, D. 2-Nitroguanidine derivatives: IX. Reaction of 1-amino-2-nitroguanidine with oxalic acid as a method of synthesis of 3(5)-nitroamino-1,2,4-triazole-5(3)-carboxylic acid and 5,5΄-bi(3-nitroamino-1,2,4-triazole) salts. Russ. J. Org. Chem. 2005, 41, 440–443.
(16) Metelkina, E.; Novikova, T.; Berdonosova, S.; Berdonosov, D.; Grineva, V. S. 2-Nitroguanidine derivatives: VII. Reaction of 2-nitroguanidine with dicarboxylic acid dihydrazides. Russ. J. Org. Chem. 2004, 40,1412–1414.
(17) Metelkina, E.; Novikova, T. 2-Nitroguanidine derivatives: VIII. Synthesis and cyclizations of N΄1, N΄2-bis(N2-nitrocarbamimidoyl) dicarboxylic acid dihydrazides and ethyl [2-(N-2-nitrocarbamimidoyl)-hydrazino](oxo) acetate. Russ. J. Org. Chem., 2004, 40, 1737–1743.
(18) Huang, X. C.; Xu, Z. B.; Meng, Z. H.; Jiang, J.; Qiu, S. J.; Ge, Z. X. Synthesis of HMX by nitrolysis of DPT in HNO3-NH4NO3. Appl. Chem. Ind. 2013, 42, 299-303 (in Chinese).
(19) Yan, Q. L.; Li, X. J.; Wang, H.; Nie, L. H.; Zhang, Z. Y.; Gao, H. X. Thermal decomposition and kinetics studies on 1,4-dinitropiperazine (DNP). J. Hazard. Mater. 2008, 151, 515–521.
(20) Desiraju, G. R.; Steiner, T. Weak Hydrogen Bond. Oxford University Press New York 2001.
(21) Scherf, L. M.; Baer, S. A.; Kraus, F.; Bawaked, S. M.; Schmidbaur, H. Implications of the crystal structure of the ammonia solvate [Au(NH3)2]Cl•4NH3. Inorg. Chem. 2013, 52, 2157–61.
(22) Canty, A.; Deacon, G. The van der Waals radius of mercury. Inorg. Chim. Acta 1980, 45, 225–227.
(23) Hu, R. Z.; Shi, Q. Z. Thermal Analysis Kinetics, Beijing: Science Press 2001 (in Chinese).