Two new quaternary rare-earth chalcogenides, Al0.42Sm3(Si0.74Al0.26)S7 (1) and Al0.38Gd3(Si0.86Al0.14)S7 (2), have been synthesized by a facile solid-state route with boron as the reducing reagent. They crystallize in the noncentrosymmetric hexagonal space group P63, belonging to the Ce6Al3.33S14 structure-type. Their 3-D structures feature 3-D frameworks constructed by RES8 bicapped trigonal prisms, and Al and Si occupy the octahedral and tetrahedral voids, respectively. Al(2) and Si(1) co-occupying the 2b site and Al(1) partially occupying the 2a site have to be considered for the stability of the structures and charge balances. The Ce6Al3.33S14 structure-type compounds with their rich compositions and traits are discussed. The diffuse reflectance spectrum measurement of 2 indicates that it has an energy gap of 2.13 eV.
Abstract:Two new quaternary rare-earth chalcogenides, Al0.42Sm3(Si0.74Al0.26)S7 (1) and Al0.38Gd3(Si0.86Al0.14)S7 (2), have been synthesized by a facile solid-state route with boron as the reducing reagent. They crystallize in the noncentrosymmetric hexagonal space group P63, belonging to the Ce6Al3.33S14 structure-type. Their 3-D structures feature 3-D frameworks constructed by RES8 bicapped trigonal prisms, and Al and Si occupy the octahedral and tetrahedral voids, respectively. Al(2) and Si(1) co-occupying the 2b site and Al(1) partially occupying the 2a site have to be considered for the stability of the structures and charge balances. The Ce6Al3.33S14 structure-type compounds with their rich compositions and traits are discussed. The diffuse reflectance spectrum measurement of 2 indicates that it has an energy gap of 2.13 eV.
This research was supported by the Higher Education Science Foundation of Jiangsu Province (No. 15KJB150031), State Key Laboratory
of Structural Chemistry (No. 20150009) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
We would also like to acknowledge the technical support received from the Testing Center of Yangzhou University
通讯作者:
spguo@yzu.edu.cn
E-mail: spguo@yzu.edu.cn
引用本文:
迟洋;郭胜平. Syntheses and Crystal Structures of Two AlxRE3(Si1-yAly)S7 (RE = Sm and Gd) Compounds[J]. 结构化学, 2016, 35(3): 341-347.
CHI Yang;GUO Sheng-Ping. Syntheses and Crystal Structures of Two AlxRE3(Si1-yAly)S7 (RE = Sm and Gd) Compounds. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35(3): 341-347.
REFERENCES
(1) Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.
(2) Chung, I.; Kanatzidis, M. G. Metal chalcogenides: a rich source of nonlinear optical materials. Chem. Mater. 2014, 26, 849–869.
(3) Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.
(4) Sun, Y. Y.; Agiorgousis, M. L.; Zhang, P. H.; Zhang, S. B. Chalcogenide perovskites for photovoltaics. Nano Lett. 2015, 15, 581–585.
(5) Li, H.; Malliakas, C. D.; Liu, Z. F.; Peters, J. A.; Sebastian, M.; Zhao, L. D.; Chung, D. Y.; Wessels, B. W.; Kanatzidis, M. G. Investigation of semi-insulating Cs2Hg6S7 and Cs2Hg6-xCdxS7 alloy for hard radiation detection. Cryst. Growth & Des. 2014, 14, 5949–5956.
(6) Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1−y)S7, and Al0. 33Sm3SiS7. Inorg. Chem. 2009, 48, 7059–7065.
(7) Guo, S. P.; Zeng, H. Y.; Guo, G. C.; Zou, J. P.; Xu, G.; Huang, J. S. Syntheses, structures and band Gaps of KLnSiS4 (Ln = Sm, Yb). Chin. J. Struct. Chem. 2008, 27, 1543–1548.
(8) Wei, F.; Wei, Z.; Chen, X. S.; Liu, G. B.; Cao, W. W.; Hu, P. A. Solid-state reaction synthesis of a InSe/CuInSe2 lateral p-n heterojunction and application in high performance optoelectronic devices. Chem. Mater. 2015, 27, 983–989.
(9) Ha, E.; Lee, L. Y. S.; Wang, J. C.; Li, F. H.; Wong, K. Y.; Tsang, S. C. E. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv. Mater. 2014, 26, 3496–3500.
(10) Rudyk, B. W.; Stoyko, S. S.; Oliynyk, A. O.; Mar, A. Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem. 2014, 210, 79–88.
(11) Gulay, L. D.; Lychmanyuk, O. S.; Stępień-Damm, J.; Pietraszko, A.; Olekseyuk, I. D. Isothermal section of the Y2S3–Cu2S–GeS2 system at 870 K and crystal structures of the Y3Ge1.25S7 and Y3CuGeS7 compounds. J. Alloys & Compd. 2006, 414, 113–117.
(12) Zhao, H. J. Syntheses, crystal structures, and NLO properties of the quaternary sulfides RE3Sb0.33SiS7 (RE = La, Pr). J. Solid State Chem. 2015, 227, 5–9.
(13) Huch, M. R.; Gulay, L. D.; Olekseyuk, I. D. Crystal structures of the R3Mg0.5GeS7 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er) compounds. J. Alloys & Compd. 2006, 424, 114–118.
(14) Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Zeng, H. Y.; Cai, L. Z.; Huang, J. S. A facile approach to hexanary chalcogenoborate featuring a 3-D chiral honeycomb-like open-framework constructed from rare-earth consolidating thiogallate-closo-dodecaborate. Chem. Commun. 2009, 29, 4366–4368.
(15) Guo, S. P.; Wang, G. E.; Zhang, M. J.; Wu, M. F.; Liu, G. N.; Jiang, X. M.; Guo, G. C.; Huang, J. S. Novel single-crystal's voltage-dependent effect and magnetic order of Ln2ZrQ5 (Ln = La, Sm, Gd; Q = S, Se) semiconductors. Dalton Trans. 2013, 42, 2679–2682.
(16) Guo, S. P.; Guo, G. C. Crystal structure and magnetic and photocatalytic properties of a new ternary rare-earth mixed chalcogenide, Dy4S4Te3. J. Mater. Chem. A 2014, 2, 20621–20628.17.
(17) Jiang, X. M.; Guo, S. P.; Zeng, H. Y.; Zhang, M. J.; Guo, G. C. Large crystal growth and new crystal exploration of mid-infrared second-order nonlinear optical materials. Struct. & Bond. 2012, 145, 1–43.
(18) Rigaku, CrystalClear Version 1.3.5, Rigaku Corporation 2002.
(19) Siemens, SHELXTLTM Version 5 Reference Manual, Siemens Energy & Automation Inc., Madison, Wisconsin, USA 1994.
(20) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York 1966.
(21) Kortüm, G. Reflectance Spectroscopy, Springer 1969.
(22) Pless, J. D.; Kim, H. S.; Smit, J. P.; Wang, X. D.; Stair, P. C.; Poeppelmeier, K. R. Structure of Mg2.56V1.12W0.88O8 and vibrational Raman spectra of Mg2.5VWO8 and Mg2.5VMoO8. Inorg. Chem. 2006, 45, 514–520.
(23) Choi, K. S.; Chung, D. Y.; Mrotzek, A.; Brazis, P.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G. Modular construction of A1+xM4-2xM'7+xSe15 (A = K, Rb; M = Pb, Sn; M' = Bi, Sb): a new class of solid state quaternary thermoelectric compounds. Chem. Mater. 2001, 13, 756–764.
(24) Mrotzek, A.; Kanatzidis, M. G. Tropochemical cell-twinning in the new quaternary bismuth selenides KxSn6-2xBi2+xSe9 and KSn5Bi5Se13. Inorg. Chem. 2003, 42, 7200–7206.
(25) Shi, Y. F.; Chen, Y. K.; Chen, M. C.; Wu, L. M.; Lin, H.; Zhou, L. J.; Chen, L. Strongest second harmonic generation in the polar R3MTQ7 family: atomic distribution induced nonlinear optical cooperation. Chem. Mater. 2015, 27, 1876–1884.
(26) Choudhury, A.; Dorhout, P. K. Alkali-metal thiogermanates: sodium channels and variations on the La3CuSiS7 structure type. Inorg. Chem. 2015, 54, 1055–1065.
(27) Lin, S. H.; Mao, J. G.; Guo, G. C.; Huang, J. S. Synthesis and crystal structure of a new quaternary compound: La3AgSe7Si. J. Alloy & Compd. 1997, 252, L8–L11.
(28) Yin, W. L.; Shi, Y. G.; Kang, B.; Deng, J. G.; Yao, J. Y.; Wu, Y. C. Rare-earth transition-metal chalcogenides Ln3MGaS7 (Ln = Nd, Sm, Dy, Er; M = Co, Ni) and Ln3MGaSe7 (Ln = Nd, Sm, Gd, Dy, M = Co; Ln= Nd, Gd, Dy, M = Ni). J. Solid State Chem. 2014, 213, 87–92.
(29) Yin, W. L.; Wang, W. D.; Kang, L.; Lin, Z. S.; Feng, K.; Shi, Y. G.; Hao, W. Y.; Yao, J. Y.; Wu, Y. C. Ln3FeGaQ7: a new series of transition-metal rare-earth chalcogenides. J. Solid State Chem. 2013, 202, 269–275.
(30) Guo, S. P.; Zeng, H. Y.; Jiang, X. M.; Guo, G. C. Crystal structure and magnetic property of a quaternary sulfide, Al0.36Sm3Ge0.98S7. Chin. J. Struct. Chem. 2009, 11, 1448–1452.
(31) Yang, Y. T.; Ibers, J. A. Accidental silicon-containing compounds: crystal structures of La3Al0.44Si0.93S7, BaSm4(SiO4)3Se, and monoclinic and orthorhombic Ln2(SiO4)Te (Ln = Nd and Sm). J. Solid State Chem. 2000, 155, 433–440.
(32) Zhao, Z. Y.; Liu, B. W.; Zeng, H. Y.; Jiang, X. M.; Zhang, M. J.; Zheng, F. K.; Guo, G. C. Syntheses and single-crystal structures of Ln3Sn0.25GeS7 (Ln = La, Sm). Chin. J. Struct. Chem. 2012, 31, 1135–1139.
(33) Daszkiewicz, M.; Gulay, L. D.; Lychmanyuk, O. S. Ln3M1-δTX7 - quasi-isostructural compounds: stereochemistry and silver-ion motion in the Ln3Ag1-δGeS7 (Ln = La-Nd, Sm, Gd-Er and Y; δ = 0.11~0.50) compounds. Acta Crystllogr. B 2009, 65, 126–133.
(34) Patrie, M.; Guittard, M. Chimie minerale. Sur les composes du type Ce6Al10/3S14. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques 1969, 268, 1136–1138.
(35) Iyer, A. K.; Rudyk, B. W.; Lin, X. S.; Singh, H.; Sharma, A. Z.; Wiebe, C. R.; Mar, A. Noncentrosymmetric rare-earth copper gallium chalcogenides RE3CuGaCh7 (RE = La–Nd; Ch = S, Se): an unexpected combination. J. Solid State Chem. 2015, 229, 150–159.