REFERENCES
(1) Tard, C.; Pickett, C. J. Structural and functional analogues of the active sites of the Fe-, NiFe-, and FeFe-hydrogenases. Chem. Rev. 2009, 109, 2245–2274.
(2) Mulder, D. W.; Shepard, E. M.; Meuser, J. E.; Joshi, N.; King, P. W.; Posewitz, M. C.; Broderick, J. B.; Peters, J. W. Insights into FeFe-hydrogenase structure, mechanism, and maturation. Structure 2011, 19, 1038–1052.
(3) Nicolet, Y.; Fontecilla-Camps, J. C. Structure-function relationships in FeFe-hydrogenase active site maturation. J. Biol. Chem. 2012, 287, 13532–13540.
(4) Broderick, J. B.; Byer, A. S.; Duschene, K. S.; Duffus, B. R.; Betz, J. N.; Shepard, E. M.; Peters, J. W. H-Cluster assembly during maturation of the FeFe-hydrogenase. J. Biol. Inorg. Chem. 2014, 19, 747–757.
(5) Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148.
(6) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282, 1853–1858.
(7) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999, 7, 13–23.
(8) Tard, C.; Liu, X. M.; Ibrahim, S. K.; Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang, X.; Wang, L. S.; Sawers, G.; Pickett, C. J. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 2005, 433, 610–613.
(9) Song, L. C. Investigations on butterfly Fe/S cluster S-centered anions (-S-)2Fe2(CO)6, (-S-)(-RS)Fe2(CO)6, and related species. Acc. Chem. Res. 2005, 38, 21–28.
(10) Liu, X. M.; Ibrahim, S. K.; Tard, C.; Pickett, C. J. Iron-only hydrogenase: synthetic, structural and reactivity studies of model compounds. Coord. Chem. Rev. 2005, 249, 1641–1652.
(11) Sun, L. C.; Akermark, B.; Ott, S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev. 2005, 249, 1653–1663.
(12) Felton, G. A. N.; Mebi, C. A.; Petro, B. J.; Vannucci, A. K.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of FeFe-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen. J. Organomet. Chem. 2009, 694, 2681–2699.
(13) Wang, Y.; Li, Z.; Zeng, X.; Wang, X.; Zhan, C.; Liu, Y.; Zeng, X.; Luo, Q.; Liu, X. Synthesis and characterisation of three diiron tetracarbonyl complexes related to the diiron centre of FeFe-hydrogenase and their protonating, electrochemical investigations. New J. Chem. 2009, 33, 1780–1789.
(14) Zeng, X.; Li, Z.; Xiao, Z.; Wang, Y.; Liu, X. Using pendant ferrocenyl group(s) as an intramolecular standard to probe the reduction of diiron hexacarbonyl model complexes for the sub-unit of FeFe -hydrogenase. Electrochem. Commun. 2010, 12, 342–345.
(15) Zhong, W.; Tang, Y.; Zampella, G.; Wang, X.; Yang, X.; Hu, B.; Wang, J.; Xiao, Z.; Wei, Z.; Chen, H.; De Gioia, L.; Liu, X. A rare bond between a soft metal (Fe-l) and a relatively hard base (RO-, R = phenolic moiety). Inorg. Chem. Commun. 2010, 13, 1089–1092.
(16) Xiao, Z. Y.; Wei, Z. H.; Long, L.; Wang, Y. L.; Evans, D. J.; Liu, X. M. Diiron carbonyl complexes possessing a {Fe(II)Fe(II)} core: synthesis, characterisation, and electrochemical investigation. Dalton Trans. 2011, 40, 4291–4299.
(17) Tang, Y.; Wei, Z.; Zhong, W.; Liu, X. Diiron complexes with pendant phenol group(s) as mimics of the diiron subunit of FeFe-hydrogenase: synthesis, characterisation, and electrochemical investigation. Eur. J. Inorg. Chem. 2011, 1112–1120.
(18) Long, L.; Xiao, Z. Y.; Zampella, G.; Wei, Z. H.; De Gioia, L.; Liu, X. M. The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations. Dalton Trans. 2012, 41, 9482–9492.
(19) Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177–2185.
(20) Qian, G.; Wang, H.; Zhong, W.; Liu, X. Electrochemical investigation into the electron transfer mechanism of a diiron hexacarbonyl complex bearing a bridging naphthalene moiety. Electrochim. Acta 2015, 163, 190–195.
(21) Pulukkody, R.; Darensbourg, M. Y. Synthetic advances inspired by the bioactive dinitrosyl iron unit. Acc. Chem. Res. 2015, 48, 2049–2058.
(22) Artero, V.; Berggren, G.; Atta, M.; Caserta, G.; Roy, S.; Pecqueur, L.; Fontecave, M. From enzyme maturation to synthetic chemistry: the case of hydrogenases. Acc. Chem. Res. 2015, 48, 2380–2387.
(23) Zhu, D.; Xiao, Z.; Liu, X. Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media. Int. J. Hydrogen Energy 2015, 40, 5081–5091.
(24) Rauchfuss, T. B. Diiron azadithiolates as models for the FeFe-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 2015, 48, 2107–2116.
(25) Capon, J. F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J. Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the FeFe-hydrogenases. Coord. Chem. Rev. 2009, 253, 1476–1494.
(26) Song, L. C.; Ge, J. H.; Liu, X. F.; Zhao, L. Q.; Hu, Q. M. Synthesis, structure and electrochemical properties of N-substituted diiron azadithiolates as active site models of Fe-only hydrogenases. J. Organomet. Chem. 2006, 691, 5701–5709.
(27) Lawrence, J. D.; Li, H.; Rauchfuss, T. B. Beyond Fe-only hydrogenases: N-functionalized 2-aza-1,3-dithiolates Fe[(SCH)NR](CO)x (x = 5, 6). Chem. Commun. 2001, 1482–1483.
(28) Jiang, S.; Liu, J. H.; Sun, L. C. A furan-containing diiron azadithiolate hexacarbonyl complex with unusual lower catalytic proton reduction potential. Inorg. Chem. Commun. 2006, 9, 290–292.
(29) Jiang, S.; Liu, J. H.; Shi, Y.; Wang, Z.; Akermark, B.; Sun, L. H. Preparation, characteristics and crystal structures of novel N-heterocyclic carbene substituted furan- and pyridine-containing azadithiolate Fe–S complexes. Polyhedron 2007, 26, 1499–1504.
(30) Jiang, S.; Liu, J. H.; Shi, Y.; Wang, Z.; Akermark, B.; Sun, L. C. Fe–S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential. Dalton Trans. 2007, 896–902.
(31) Sheldrick, G. M. SADABS. University of Göttingen: Germany 1996.
(32) Sheldrick, G. M. SHELXS97, Program for Crystal Structure Solution. University of Göttingen: Germany 1997.
(33) Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement. University of Göttingen: Germany 1997.
(34) Angamuthu, R.; Carroll, M. E.; Ramesh, M.; Rauchfuss, T. B. A new route to azadithiolato complexes. Eur. J. Inorg. Chem. 2011, 1029–1032.
(35) Xu, F.; Tard, C.; Wang, X.; Ibrahim, S. K.; Hughes, D. L.; Zhong, W.; Zeng, X.; Luo, Q.; Liu, X.; Pickett, C. J. Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site. Chem. Commun. 2008, 606–608.
(36) Xiao, Z.; Xu, F.; Long, L.; Liu, Y.; Zampella, G.; De Gioia, L.; Zeng, X.; Luo, Q.; Liu, X. Influence of the basicity of internal bases in diiron model complexes on hydrides formation and their transformation into protonated diiron hexacarbonyl. J. Organomet. Chem. 2010, 695, 721–729.
(37) Wang, F. J.; Wang, M.; Liu, X. Y.; Jin, K.; Dong, W. B.; Li, G. H.; Akermark, B.; Sun, L. C. Spectroscopic and crystallographic evidence for the N-protonated (FeFeI)-Fe-I azadithiolate complex related to the active site of Fe-only hydrogenases. Chem. Commun. 2005, 3221–3223. |