Ionothermal Synthesis and Characterization of a Three- dimensional Anionic Zinc-5-sulfoisophthalate Framework Charge-balanced with the 1-Ethyl-3-methylimidazolium
范丛斌;王玉玲;许文苑;刘庆燕
a (Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China)
b (College of Chemistry and Chemical Engineering,Jiangxi Normal University Nanchang, Jiangxi 330022, China)
c (College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China)
Ionothermal Synthesis and Characterization of a Three- dimensional Anionic Zinc-5-sulfoisophthalate Framework Charge-balanced with the 1-Ethyl-3-methylimidazolium
FAN Cong-Bin;WANG Yu-Ling;XU Wen-Yuan;LIU Qing-Yan
a (Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China)
b (College of Chemistry and Chemical Engineering,Jiangxi Normal University Nanchang, Jiangxi 330022, China)
c (College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China)
The ionothermal reaction of Zn(NO3)2∙6H2O with 5-sulfoisophthalic acid mono- sodium salt (NaH2SIP) and 1,2,4-triazole in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid has afforded the compound {(EMIM)[Zn(SIP)]}n (1). The Zn(II) ions are linked by the carboxylate groups of SIP3− ligands to give a two-dimensional layered structure featuring the centrosymmetric dinuclear Zn2(µ2-COO)2 units. The adjacent two-dimensional layers are further linked by the Zn–O bonds between the Zn(II) ions and the sulfonate O atoms to generate a three-dimensional anionic [Zn(SIP)]nn- framework featuring one-dimensional open channels propagating along the a axis. The imidazolium cations [EMIM]+ derived from ionic liquid act as extraframework charge-balancing species for the anionic [Zn(SIP)]nn- framework and occupy the void space of the one-dimensional open channels. The rich ionic environments of the ionic liquid may be particularly helpful in the formation of the ionic compound 1. The roles of the ionic liquid in ionothermal synthesis and crystallization of the compound are briefly discussed. Furthermore, compound 1 displays a photoluminescent emission at 490 nm upon excitation at 406 nm.
Abstract:The ionothermal reaction of Zn(NO3)2∙6H2O with 5-sulfoisophthalic acid mono- sodium salt (NaH2SIP) and 1,2,4-triazole in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid has afforded the compound {(EMIM)[Zn(SIP)]}n (1). The Zn(II) ions are linked by the carboxylate groups of SIP3− ligands to give a two-dimensional layered structure featuring the centrosymmetric dinuclear Zn2(µ2-COO)2 units. The adjacent two-dimensional layers are further linked by the Zn–O bonds between the Zn(II) ions and the sulfonate O atoms to generate a three-dimensional anionic [Zn(SIP)]nn- framework featuring one-dimensional open channels propagating along the a axis. The imidazolium cations [EMIM]+ derived from ionic liquid act as extraframework charge-balancing species for the anionic [Zn(SIP)]nn- framework and occupy the void space of the one-dimensional open channels. The rich ionic environments of the ionic liquid may be particularly helpful in the formation of the ionic compound 1. The roles of the ionic liquid in ionothermal synthesis and crystallization of the compound are briefly discussed. Furthermore, compound 1 displays a photoluminescent emission at 490 nm upon excitation at 406 nm.
Supported by the National Natural Science Foundation of China (21101081), the Project of the Science Funds of Jiangxi Education Office (GJJ14235), Science Founds of StateKey Laboratory of Structural Chemistry (20130011) and Hunan Province Project of Science and Technology (2014FJ6032)
通讯作者:
ylwang@jxnu.edu.cn
E-mail: 632334302@qq.com
引用本文:
范丛斌;王玉玲;许文苑;刘庆燕. Ionothermal Synthesis and Characterization of a Three- dimensional Anionic Zinc-5-sulfoisophthalate Framework Charge-balanced with the 1-Ethyl-3-methylimidazolium[J]. 结构化学, 2016, 35(1): 77-84.
FAN Cong-Bin;WANG Yu-Ling;XU Wen-Yuan;LIU Qing-Yan. Ionothermal Synthesis and Characterization of a Three- dimensional Anionic Zinc-5-sulfoisophthalate Framework Charge-balanced with the 1-Ethyl-3-methylimidazolium. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35(1): 77-84.
REFERENCES
(1)Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks Acc. Chem. Res. 2001, 34, 319–330.
(2)Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.
(3)Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.
(4)Wang, X. Y.; Wang, Z. M.; Gao, S. Constructing magnetic molecular solids by employing three-atom ligands as bridges, Chem. Commun. 2008, 281–294.
(5)Del Popolo, M. G.; Voth, G. A. On the structure and dynamics of ionic liquids. J. Phys. Chem. B 2004, 108, 1744–1752.
(6)Parnham, E. R.; Morris, R. E. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res. 2007, 40, 1005–1013.
(7)Chen, S. M.; Zhang, J.; Bu, X. H. Ionothermal synthesis of homochiral framework with acetate-pillared cobalt-camphorate architecture. Inorg. Chem. 2008, 47, 5567–5569.
(8)Zhang, N.; Liu, Q. Y.; Wang, Y. L.; Shan, Z. M.; Yang, E. L.; Hu, H. C. Ionothermal syntheses of two coordination polymers constructed from 5-sulfoisophthalic acid ligands with 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid as solvent. Inorg. Chem. Commun. 2010, 13, 706–710.
(9)Xu, L.; Choi, E. Y.; Kwon, Y. U. Ionothermal syntheses of six three-dimensional zinc metal-organic frameworks with 1-alkyl-3-methylimidazolium bromide ionic liquids as solvents. Inorg. Chem. 2007, 46, 10670–10680.
(10)Chen, W. X.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S. Ionothermal synthesis of 3d-4f and 4f layered anionic metal-organic frameworks. CrystEngComm. 2009, 11, 1522–1525.
(11)Lin, Z.; Slawin, A. M. Z.; Morris, R. E. Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. J. Am. Chem. Soc. 2007, 129, 4880–4881.
(12)Liu, Q. Y.; Li, Y. L.; Liu, C. M.; Wang, Y. L.; Wei, J. J.; Xiahou, Z. J.; Xiong, L. H. Chiral induction in the ionothermal synthesis of a 3D chiral heterometallic metal-organic framework constructed from achiral 1,4-naphthalenedicarboxylate. Inorg. Chem. 2013, 52, 6773–6775.
(13)Liu, Q. Y.; Li, Y. L.; Zhang, N.; Jiang, Y. L.; Wei, J. J.; Luo, F. Spontaneous resolution in the ionothermal synthesis of homochiral Zn(II) metal-organic frameworks with (10,3)-a topology constructed from achiral 5-sulfoisophthalate. Cryst. Growth Des. 2011, 11, 3717–3720.
(14)Tan, B.; Xie, Z. L.; Feng, M. L.; Hu, B.; Wu, Z. F.; Huang, X. Y. Ionothermal syntheses, crystal structures and properties of three-dimensional rare earth metal-organic frameworks with 1,4-naphthalenedicarboxylic acid. Dalton Trans. 2012, 41, 10576–10584.
(15)Liu, Q. Y.; Li, Y. L.; Wang, Y. L.; Liu, C. M.; Ding, L. W.; Liu, Y. Ionothermal synthesis of a 3D dysprosium-1,4-benzenedicarboxylate framework based on the 1D rod-shaped dysprosium-carboxylate building blocks exhibiting slow magnetization relaxation. CrystEngComm. 2014, 16, 486–491.
(16)Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA 2008.
(17)Sheldrick, G. M. A short history of SHELX, Acta Crystallogr., Sect. A 2008, 64, 112–122.
(18)Tao, J.; Yin, X.; Wei, Z. B.; Huang, R. B.; Zheng, L. S. Hydrothermal syntheses, crystal structures and photoluminescent properties of three metal-cluster based coordination polymers containing mixed organic ligands. Eur. J. Inorg. Chem. 2004, 125–133.
(19)Liu, Q. Y.; Xu, L. Synthesis, crystal structures, and photophysical properties of two novel lead(II)-SIP coordination polymers (NaH2SIP = 5-sulfoisophthalic acid monosodium salt) containing tetranuclear lead(II) units. Eur. J. Inorg. Chem. 2006, 1620–1628.
(20)Wang, X. L.; Qu, Y.; Liu, G. C.; Luan, J.; Lin, H. Y. Effect of organic polycarboxylates on the architectures of cadmium(II) coordination polymers based on dipyrazino[2,3-f:2,3-h]quino-xaline: syntheses, crystal structures, and photoluminescence properties. Inorg. Chim. Acta 2013, 399, 105–111.
(21)Qin, C.; Wang, X. L.; Wang, E. B.; Su, Z. M. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies. Inorg. Chem. 2005, 44, 7122–7129.
(22)Allen, F. H. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta. Cryst. B 2002, 58, 380–388.
(23)Tao, J.; Yin, X.; Wei, Z. B.; Huang, R. B.; Zheng, L. S. Hydrothermal syntheses, crystal structures and photoluminescent properties of three metal-cluster based coordination polymers containing mixed organic ligands. Eur. J. Inorg. Chem. 2004, 125–133.
(24)Liu, Q. Y.; Li, Y. L.; Shan, Z. M.; Cao, R.; Jiang, Y. L.; Wang, Z. J.; Yang, E. L. Novel noncentrosymmetric zinc coordination polymer containing an unusual zinc carboxylate-sulfonate substructure with a (10,3)-d topology and its second-harmonic-generation properties. Inorg. Chem. 2010, 49, 8191–8193.
(25)Park, H.; Krigsfeld, G.; Parise, J. B. Solvothermal synthesis and structural characterization of new Zn-triazole-sulfoisophthalate frameworks. Cryst. Growth Des. 2007, 7, 736–740.
(26)Tian, L.; Niu, Z.; Yang, N.; Zou, J. Y. Crystal structures and luminescent properties of zinc(II) and cadmium(II) compounds constructed from 5-sulfoisophthalic acid and flexible bis-triazole ligands. Inorg. Chim. Acta 2011, 370, 230–235.
(27)Evans, R. C.; Douglas, P.; Winscom, C. J. Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord. Chem. Rev. 2006, 250, 2093–2126.
(28)Liu, Q. Y.; Xu, L. Synthesis, crystal structures and photophysical properties of two supramolecular complexes of cadmium(II). Inorg. Chem. Commun. 2005, 8, 401–405.
(29)Ford, P. C.; Vogler, A. Photochemical and photophysical properties of tetranuclear and hexanuclear clusters of metals with d10 and s2 electronic configurations. Acc. Chem. Res. 1993, 26, 220–226.
(30)Zheng, S. L.; Chen, X. M. Recent advances in luminescent mononmeric, multinuclear, and polymeric Zn(II) and Cd(II) coordination complexes. Aust. J. Chem. 2004, 57, 703–712.