REFERENCES
(1)Li, X.; Zheng, W.; Machesky, M. L.; Yates, S. R.; Katterhenry, M. Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from a beef farm. J. Agric. Food Chem. 2011, 59, 10176–10181.
(2)Enzo, R.; Campagnolo; Kammy, R. J.; Adam, K.; Carol, S. R. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci. Total. Envion. 2002, 299, 89–95.
(3)Ana, R. V.; Sandra, A.; Olga, C. N.; Celia, M. M. Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plantsystem. Water Res. 2014, 2, 309–315.
(4)Bjorn, J. A.; Berendsen; Robin, S. W.; Joost, M.; Tina, Z.; Linda A. M. The analysis of animal faces as a tool to monitor antibiotic usage. Talanta. 2015, 132, 258–268.
(5)Yu, X. N.; Lu, Z. Y.; Wu, D.; Yu, P.; He, M.; Heteropolyacid-chitosan/TiO2 composites for the degradation of tetracycline hydrochloride solution. Reac. Kinet. Mech. Cat. 2014, 111, 347–360.
(6)Ahmed, M. B. M.; Rajapaksha, A. U.; Lim, J. E.; Vu, N. T. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015, 63, 398–405.
(7)Cinquina, A. L.; Longo, F.; Anastasi, G.; Giannetti, L.; Cozzani, R. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A 2003. 987, 227–233.
(8)Gan, T.; Shi, Z.; Sun, J.; Liu, Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged mon-tmorillonite catalyst. Talanta. 2014, 121, 187–193.
(9)Lv, Y. K.; Zhang, J. Q.; Guo, Z. Y.; Zhang, W.; Sun, H. W. Determination of tetracyclines residues in egg, milk, and milk powder by online coupling of a precolumn packed with molecular imprinted hybrid composite materials to RP-HPLC-UV. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1–7.
(10)Qin, J. Y.; Xie, L. J.; Ying, Y. B. Feasibility of terahertz time-domain spectroscopy to detect tetracyclines hydrochloride in infant milk powder. Anal. Chem. 2014, 86, 11750–11757.
(11)Michael, I.; Hapeshi, E.; Michael, C.; Varela, A. R.; Kyriakou, S. Solar photo-fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res. 2012, 46 5621–5634.
(12)Kitazono, Y.; Ihara, I.; Yoshida, G.; Toyoda, K.; Umetsu, K. Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method. J. Hazard Mater. 2012, 243, 112–116.
(13)Carlos, N. R.; Ana, R. V.; Thomas, S.; Olga, C. N. BlaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. J. Glob . Antimicrob. Re. 2014, 2, 309–315.
(14)Consuelo, C. P.; Angel, M.; Rosa, P. Fast screening methods to detect antibiotic residues in food samples. Trac-Trend. Anal. Chem. 2010, 29, 1038–1049.
(15)Jiméneza, V.; Rubiesb, A.; Centrichb, F.; Companyóa, R.; Guiterasa, J. Development and validation of a multiclass method for the analysis of antibiotic residues in eggs by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 1443–1451.
(16)Chen, X.; Xue, H.; Li, Z. H.; Wu, L.; Wang, X. X.; Fu, X. Z. Ternary wide band gap p-block metal semiconductor ZnGa2O4 for photocatalytic benzene degradation. J. Phys. Chem. C 2008, 112, 20393–20397.
(17)Xue, H.; Li, Z. H.; Wu, L.; Ding, Z. X.; Wang, X. X.; Fu, X. Z. Nanocrystalline ternary wide band gap p-block metal semiconductor Sr2Sb2O7:hydrothermal syntheses and photocatalytic benzene degradation. J. Phys. Chem. C 2008, 112, 5850–5855.
(18)Michela, S.; Andrea, S.; Federica, M.; Antonella, P. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl. Cata. B: Environ. 2012, 119, 32–39.
(19)Zhu, X. D.; Wang, Y. J.; Zhou, D. G. TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors. J. Soils. Sediments 2014, 50, 232–237.
(20)Shi, H. J.; Xiao, X.; Zeng, L. X.; Zhang, Q. Y.; Nan, J. M.; Wang, L. S. Synthesis of three-dimensional (3D) hierarchical titanate nanoarchitectures from Ti particles and their photocatalytic degradation of tetracycline hydrochloride under visible-light irradiation. J. Nanosci. Nanotechnol. 2014, 14, 6934–6940.
(21)Javid, A.; Nasseri, S.; Mesdaghinia, A.; Mahvi, A. H. Performance of photocatalytic oxidation of tetracycline in aqueous solution by TiO2 nanofibers. J. Environ. Health Sci. Eng. 2013, 11, 24–30.
(22)Palominos, R. A.; Mondaca, M. A.; Giraldo, A.; Penuela, G.; Perez-Moya, M.; Mansilla, H. D. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal. Today 2009, 144, 100–105.
(23)Wang, P.; Yap, P. S.; Lim, T. T. C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl. Catal. Gen. 2011, 399, 252–261.
(24)Yanagida, T.; Sakata, Y.; Imamura, H. Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO. Chem. Lett. 2004, 33, 726–727.
(25)Oveisi, H,; Anand, C.; Mano, A.; Al-Deyab, S. S.; Kalita, P.; Beitollahi, A. Inclusion of size controlled gallium oxide nanoparticles into highly ordered 3D mesoporous silica with tunable pore diameters and their unusual catalytic performance. J. Mater. Chem. 2010, 20, 10120.
(26)Hou, Y. D.; Zhang, J. S.; Ding, Z. X.; Wu, L. Synthesis, characterization and photocatalytic activity of β-Ga2O3 nanostructures. Powder Tech. 2010, 203, 440–446.
(27)Hou, Y. D.; Wang, X. C.; Wu, L.; Ding, Z. G.; Fu, X. Z. Efficient decomposition of benzene over a β-Ga2O3 photocatalyst under ambient conditions. Environ. Sci. Technol. 2006, 40, 5799–5803.
(28)Chai, X. H.; Liu, Z. H.; Huang, Y. P. Influence of PEG 6000 on gallium oxide (Ga2O3) polymorphs and photocatalytic properties. Sci. China Chem. 2015, 3, 532–538.
(29)Hou, Y. D.; Wu, L.; Wang, X. C.; Ding, Z. G.; Li, Z. H.; Fu, X. Z. Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J. Catal. 2007, 205, 12–18.
(30)Tu, B. Z.; Cui, Q. L.; Xu, P.; Wang, X.; Gao, W.; Wang, C. X.; Liu, J.; Zou, G. T. The pressure-induced phase transition of Ga2O3. J. Phys.: Condens. Matter. 2002, 14, 10627–10630.
(31)Jin, S. Q.; Wang, X.; Wang, X. L.; Ju, M. G.; Shen, S. Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example. J. Phys. Chem. C. 2015, 119, 18221–18228.
(32)Ren, W. J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B: Environ. 2007, 69, 138–144.
(33)Sato , J.; Kobayashi, H.; Inoue, Y. Photocatalytic activity for waterdecomposition of indates with octahedrally coordinated d10 configuration. II. roles of geometric and electronic structures. J. Phys. Chem. B 2003, 107, 7970–7975.
(34)Li, Z. H.; Xue, H.; Wang, X. X.; Fu, X. Z. Characterizations and photocatalytic activity of nanocrystalline La1. 5Ln0. 5Ti2O7 (Ln = Pr, Gd, Er) solid solutions prepared via a polymeric complex method. J. Mol. Catal. A: Chem. 2006, 260, 56–61.
(35)Wu, J. J.; Wen, H. I.; Tseng, C. H.; Liu, S. C. Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 2004, 14, 806–816.
(36)Lin, J.; Liu, X. L.; Zhu, S.; Liu, Y. S.; Chen, X. F. Anatase TiO2 nanotube powder film with high crystallinity for enhanced photocatalytic performance. Nanoscale Res. Lett. 2015, 10, 110–116. |