a (College of Chemistry, Fuzhou University, Fuzhou 350002, China)
b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
a (College of Chemistry, Fuzhou University, Fuzhou 350002, China)
b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)
The macrocyclic ligand -H2pyN2-O3ane (2) was readily prepared in a diluted condition in THF. The mixture of 2 and Ni(OTf)2 in DMF using Et4NOH as the base source gave a mononuclear square planar complex (Et4N)[Ni(OH)(-pyN2-O3ane)] (3). Addition of Fe(OTf)2 into the solution of 3 in DMF instantly generated a hexagonal molecular nickel-wheel 4 in 72% yield. Both 3 and 4 were characterized by X-ray crystallography on a MoKα radiation diffractometer (λ = 0.71073 Å): the crystal of 3 was grown in space group P212121 with a = 12.079(5), b = 15.099(6), c = 17.299(8) Å, V = 3160(2) Å3, Z = 4, Dc = 1.369 g/cm3, F(000) = 1384, C33H44N4NiO6, Mr = 651.43, μ = 0.665 cm-1, R = 0.0353, wR = 0.0668 for 4548 observed reflections with I > 2σ(I); 4 is in space group P21/n with a = 17.7416(17), b = 17.5490(17), c = 29.036(3) Å, β = 106.195(2)°, V = 8681.5(14) Å3, Z = 2, Dc = 1.352 g/cm3, F(000) = 3704, C170H190N22Ni6O40, Mr = 3533.70, μ = 719 cm-1, R = 0.0841 and wR = 0.2339 for 9371 observed reflections with I > 2σ(I).
The macrocyclic ligand -H2pyN2-O3ane (2) was readily prepared in a diluted condition in THF. The mixture of 2 and Ni(OTf)2 in DMF using Et4NOH as the base source gave a mononuclear square planar complex (Et4N)[Ni(OH)(-pyN2-O3ane)] (3). Addition of Fe(OTf)2 into the solution of 3 in DMF instantly generated a hexagonal molecular nickel-wheel 4 in 72% yield. Both 3 and 4 were characterized by X-ray crystallography on a MoKα radiation diffractometer (λ = 0.71073 Å): the crystal of 3 was grown in space group P212121 with a = 12.079(5), b = 15.099(6), c = 17.299(8) Å, V = 3160(2) Å3, Z = 4, Dc = 1.369 g/cm3, F(000) = 1384, C33H44N4NiO6, Mr = 651.43, μ = 0.665 cm-1, R = 0.0353, wR = 0.0668 for 4548 observed reflections with I > 2σ(I); 4 is in space group P21/n with a = 17.7416(17), b = 17.5490(17), c = 29.036(3) Å, β = 106.195(2)°, V = 8681.5(14) Å3, Z = 2, Dc = 1.352 g/cm3, F(000) = 3704, C170H190N22Ni6O40, Mr = 3533.70, μ = 719 cm-1, R = 0.0841 and wR = 0.2339 for 9371 observed reflections with I > 2σ(I).
REFERENCES
(1)Ragsdale, S. W.; Kumar, M. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem. Rev. 1996, 96, 2515–2539.
(2)Jeoung, J. H.; Dobbek, H. Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 2007, 318, 1461–1464.
(3)Gong, W.; Hao, B.; Wei, Z.; Ferguson, D. J.; Tallant, T.; Krzycki, J. A.; Chan, M. K. Structure of the α2ε2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc. Natl. Acad. Sci. USA 2008, 105, 9558–9563.
(4)Kung, Y.; Doukov, T. I.; Seravalli, J.; Ragsdale, S. W.; Drennan, C. L. Crystallographic snapshots of cyanide- and water-bound clusters from bifunctional carbon monoxide dyhydrogenase/acetyl-COA synthase. Biochemistry 2009, 48, 7432–7440.
(5)Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Crystal structure of the nickel hydrogenase from desulfovibrio gigas. Nature 1995, 373, 580–587.
(6)Evans, D. J. Chemistry relating to the nickel enzymes CODH and ACS. Coord. Chem. Rev. 2005, 249, 1582–1595.
(7)Vignais, P. M. H/D exchange reactions and mechanistic aspects of the hydrogenases. Coord. Chem. Rev. 2005, 249, 1677–1690.
(8)Hauptmann, H.; Walter, W. F. The action of Raney nickel on organic sulfur compounds. Chem. Rev. 1962, 62, 347–404.
(9)Ertl, G.; Knözinger, H. “Preparation of Solid Catalysts”. Wiley. ISBN 3-527-29826-6 1997, 30–34.
(10)Davis, J. R. "Uses of Nickel". ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys. ASM International. ISBN 978-0-87170-685-0 2000, pp7–13.
(11)Greenwood, N. N.; Earnshaw, A. In “Chemistry of the Elements”; Reed Educational and Professional Publishing Ltd.; Great Britain 1997, 1144–1172.
(12)Coyle, C. L.; Stiefel, E. I. In “The Bioinorganic Chemistry of Nickel”; Lancaster Jr, J. R., Ed.; VCH Publishers, Inc.; New York 1998, pp 1–28.
(13)Mabbs, F. E.; Collison, D. “Electron Paramagnetic Resonance of d Transition Metal Compounds”. Elsevier science. ISBN 0444898522 1992, 1326.
(14)Chen, W. T.; Hu, R. H.; Luo, Z. G.; Chen, H. L. Synthesis and characterization of meso-tetra(4-carboxyphenyl)porphyrin complex of palladium. Asian J. Chem. 2015, 27, 775–776.
(15)Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.
(16)Chen, W. T.; Hu, R. H.; Wang, Y. F.; Zhang, X.; Liu, J. A Tb-Zn tetra(4-sulfonatophenyl)porphyrin hybrid: preparation, structure, photophysical and electrochemical properties. J. Solid State Chem. 2014, 213, 218–223.
(17)Patra, A. K.; Mukherjee, R. Bivalent, trivalent, and tetravalent nickel complexes with a common tridentate deprotonated pyridine bis-amide ligand. Molecular structures of nickel(II) and nickel(IV) and redox activity. Inorg. Chem. 1999, 38, 1388–1393.
(18)Wasilke, J. C.; Wu, G.; Bu, X.; Kehr, G.; Erker, G. Ruthenium carbene complexes featuring a tridentate pincer-type ligand. Organometallics 2005, 24, 4289–4297.
(19)Huang, D.; Holm, R. H. Reactions of the terminal NiII–OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular NiII···FeII bridged site. J. Am. Chem. Soc. 2010, 132, 4693–4701.
(20)Huang, D.; Makhlynets, O. V.; Tan, L. L.; Lee, S. C.; Ryback-Akimova, E. V.; Holm, R. H. Kinetics and mechanistic analysis of an extremely rapid carbon dioxide fixation reaction. Proc. Natl. Acad. Sci. USA 2011, 108, 1222–1227.
(21)Huang, D.; Makhlynets, O. V.; Tan, L. L.; Lee, S. C.; Ryback-Akimova, E. V.; Holm, R. H. Fast carbon dioxide fixation by 2,6-pyridinedicarboxamidato-nickel(II)-hydroxide complexes: influence of changes in reactive site environment on reaction rates. Inorg. Chem. 2011, 50, 10070–10081.
(22)Zhang, X.; Huang, D.; Chen, Y. S.; Holm, R. H. Synthesis of binucleating macrocycles and their nickel(II) hydroxo- and cyano-bridged complexes with divalent ions: anatomical variation of ligand features. Inorg. Chem. 2012, 51, 11017–11029.
(23)Moriuchi, T.; Kamikawa, M.; Bandoh, S.; Hirao, T. Architectural formation of a conjugated bimetallic Pd(II) complex via oxidative complexation and a tetracyclic Pd(II) complex via self-assembling complexation. Chem. Commun. 2002, 1476–1477.
(24)Dell’Amico, D. B.; Calderazzo, F.; Colo, F. D.; Guglielmetti, G.; Labella, L.; Marchetti, F. Coordination properties towards palladium(II) of a tridentate dianionic ligand acting as a N- or N,O-donor. Inorg. Chim. Acta 2006, 359, 127–135.
(25)Wang, Q. Q.; Day, V. W.; Bowman-James, K. Hexagonal molecular “palladawheel”. Chem. Commun. 2013, 49, 804–8044.
(26)Goldup, S. M.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Slawin, A. M. Z. Active template synthesis of rotaxanes and moleculear shuttles with switchable dynamoics by four-component PdII-promoted Michael additions. Angew. Chem. 2008, 120, 3429–3432.
(27)Wang, Q. Q.; Begum, R. A.; Day, V. W.; Bowman-James, K. Chemical mustard containment using simple palladium pincer complexes: the influence of molecular walls. J. Am. Chem. Soc. 2013, 135, 17193–17199.
(28)Patra, A. K.; Ray, M.; Mukherjee, R. Magneto-structural studies of monohydroxo-bridged dicopper(II) complexes M[Cu2L2(OH)]·2H2O (M = Na+ (1) and K+ (2); H2L = 2,6-bis[N-(phenyl)carbamoyl]pydidine). Effect of Cu-OH-Cu bridge angle on antiferromagnetic coupling. Polyhedron 2000, 19, 1423–1428.
(29)Donoghue, P. J.; Gupta, A. K.; Boyce, D. W.; Cramer, C. J.; Tolman, W. B. An anionic, tetragonal copper(II) superoxide complex. J. Am. Chem. Soc. 2010, 132, 15869–15871.
(30)Donoghue, P. J.; Tehranchi, J.; Cramer, C. J.; Sarangi, R.; Solomon, E. I.; Tolman W. B. Rapid C–H bond activation by a monocopper(III)-hydroxide complex. J. Am. Chem. Soc. 2011, 133, 17602–17605.
(31)Halvagar, M. R.; Neisen, B.; Tolman, W. B. Copper-, palladium-, platinum-containing complexes of an asymmetric dinucleating ligand. Inorg. Chem. 2013, 52, 793–799.
(32)Tehranchi, J.; Donoghue, P. J.; Cramer, C. J.; Tolman, W. B. Reactivity of (dicarboxamide)MII-OH (M = Cu, Ni) complexes-reaction with acetonitrile to yield MII-cyanomethides. Eur. J. Inorg. Chem. 2013, 4077–4084.
(33)Oostenryck, L. V.; Tinant, B.; Declercq, J. P.; Dutasta, J. P.; Simon, P. Preparation and structural properties of macrocyclic phosphonamides. Structural characterization of a potassium complex. Journal of Inclusion phenomena and Molecular Recognition in Chemistry 1993, 16, 383–402.
(34)Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.
(35)Kitajima, N.; Hikuchi, S.; Tanaka, M.; Moro-oka, Y. Fixation of atmospheric carbon dioxide by a series of hydroxo complexes of divalent metal ions and the implication for the catalytic role of metal ion in carbonic anhydrase. Synthesis, characterization, and molecular structure of [LM(OH)]n (n = 1 or 2) and LM(μ-CO3)ML (M(II) = Mn, Fe, Co, Ni, Cu, Zn; L = HB(3,5-iso-Pr2pz)3). J. Am. Chem. Soc. 1993, 115, 5496–5508.
(36)Barrios, A. M.; Lippard, S. J. Interaction of urea with a hydroxide-bridged dinuclear nickel center: an alternative model for the mechanism of urease. J. Am. Chem. Soc. 2000, 122, 9172–9177.
(37)Patra, A. K.; Mukherjee, R. Bivalent, trivalent, and tetravalent nickel complexes with a common tridentate deprotonated pyridine bis-amide ligand. Molecular structures of nickel(II) and nickel(IV) and redox activity. Inorg. Chem. 1999, 38, 1388–1393.
(38)Carmona, E.; Marín, J. M.; Palma, P.; Paneque, M.; Poveda, M. L. Pyrrolyl, hydroxo, and carbonate organometallic derivatives of nickel(II). Crystal and molecular structure of [Ni(CH2C6H4-o-Me)(PMe3)(μ-OH)]2·2,5-HNC4H2Me2. Inorg. Chem. 1989, 28, 1895–1900.
(39)Dell’Amico, D. B.; Calderazzo, F.; Colo, F. D.; Guglielmetti, G.; Labella, L.; Marchetti, F. Coordination properties towards palladium(II) of a tridentate dianionic ligand acting as a N- or a N,O-donor. Inorg. Chim. Acta 2006, 359, 127–135.