(1)Sigman, D. S.; Mazumder, A.; Perri, D. M. Chemical nuclease. Chem. Rev. 1993, 93, 2295–2316.
(2)Yue, L.; Zhou, Y. Z. Chromium complexes with cleaving DNA activity. Prog. Chem. 2009, 21, 2093–2099.
(3)Li, J.; Xiong, P. P.; Bu, H. Y.; Chen, S. P. Syntheses, structures, antifungal activities and DNA cleavage of transition metal coordination compounds with 4-(1H-1,2,4-triazol-1-ylmethyl). Acta Phys-Chim. Sin. 2014, 30, 1354–1362.
(4)Kuzin, A. P.; Nukaga, M.; Nukaga, Y.; Hujer, A.; Bonomo, R. A.; Knox, J. R. Inhibition of the SHV-1 β-lactamase by sulfones: crystallographic observation of two reaction intermediates with tazobactam. Biochemistry 2001, 40, 1861–1866.
(5)Karanam, M.; Dev, S.; Choudhury, A, R. New polymorphs of fluconazole: results from cocrystallization experiments. Cryst. Growth Des. 2012, 12, 240–252.
(6)Bratsos, I.; Urankar, D.; Zangrando, E.; Genova-Kalou, P.; Kŏsmrlj, J.; Alessio, E.; Turel, I. 1-(2-picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity. Dalton Trans. 2011, 40, 5188–5199.
(7)Fisher, S. Z.; Aggarwal, M.; Kovalevsky, A, Y.; Silverman, D. N.; McKenna, R. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding. J. Am. Chem. Soc. 2012, 134, 14726−14729.
(8)Gall, M.; Kamdar, B. V.; Collins, R. J. Pharmacology of some metabolites of triazolam, alprazolam, and diazepam prepared by a simple, one-step oxidation of benzodiazepines. J. Med. Chem. 1978, 21, 1290-1294.
(9)Hu, M. C.; Wang, Y.; Zhai, Q. G.; Li, S. Y.; Jiang, Y. C.; Zhang, Y. Synthesis, crystal structures, and photoluminescent properties of the Cu(I)/X/α,ω-bis(benzotraizole)alkane hybrid family (X = Cl, Br, I, and CN). Inorg. Chem. 2009, 48, 1449–1468.
(10)Huang, S.; Clark, R. J.; Zhu, L. Highly sensitive fluorescent probes for zinc ion based on triazolyl-containing tetradentate coordinate motifs. Org. Lett. 2007, 9, 4999–5002.
(11)Schweinfurth, D.; Demeshko, S.; Khusniyarov, M. M.; Dechert, S.; Gurram, V.; Buchmeiser, M. R.; Meyer, F.; Sarkar, B. Capped-tetrahedrally coordinated Fe(II) and Co(II) complexes using a ''click''-derived tripodal ligand: geometric and electronic structures. Inorg. Chem. 2012, 51, 7592−7597.
(12)Schweinfurth, D.; Krzystek, J.; Schapiro, I.; Demeshko, S.; Klein, J.; Telser, J.; Ozarowski, A.; Su, C. Y.; Meyer, F.; Atanasov, M.; Neese, F.; Sarkar, B. Electronic structures of octahedral Ni(II) complexes with "click" derived triazole ligands: a combined structural, magnetometric, spectroscopic, and theoretical study. Inorg. Chem. 2013, 52, 6880−6892.
(13)Kilpin, K. J.; Gavey, E. L.; McAdam, C. J.; Anderson, C. B.; Lind, S. J.; Keep, C. C.; Gordon, K. C.; Crowley, J. D. Palladium(II) complexes of readily functionalized bidentate 2-pyridyl-1,2,3-triazole ''click'' ligands: a synthetic, structural, spectroscopic, and computational study. Inorg. Chem. 2011, 50, 6334–6346.
(14)Zhou, X. H. A dinuclear Ni(Ⅱ) complex [Ni2(Htda)2(H2O)6]·4H2O: synthesis, crystal structure and properties. Chem. J. Chin. Uni. 2010, 26, 801–806.
(15)Urankar, D.; Pinter, B.; Pevec, A.; Proft, F. D.; Turel, I.; Kosmrlj, J. Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorg. Chem. 2010, 49, 4820–4829.
(16)Yue, Y. F.; Wang, B. W.; Gao, E. Q.; Fang, C. J.; He, C.; Yan, C. H. A novel three-dimensional heterometallic compound: templated assembly of the unprecedented planar ‘‘Na∈[Cu4]’’ metalloporphyrin-like subunits. Chem. Commun. 2007, 2034–2036.
(17)Li, Y. J.; Huffman, J. C.; Flood, A. H. Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem. Commun. 2007, 2692–2694.
(18)(a) Zhang, W. X.; Xue, W.; Lin, J. B.; Zheng, Y. Z.; Chen, X. M. 3D geometrically frustrated magnets assembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate as triangular nodes. CrystEngComm. 2008, 10, 1770–1776. (b) Zhang, W. X.; Xue, W.; Chen, X. M. Flexible mixed-spin Kagomé coordinationpolymers with reversible magnetism triggered by dehydration and rehydration. Inorg. Chem. 2011, 50, 309–316. (c) Zhang, W. X.; Xue, W.; Zheng, Y. Z.; Chen, X. M. Two spin-competing manganese(II) coordination polymers exhibiting unusual multi-step magnetization jumps. Chem. Commun. 2009, 3804–3806.
(19)(a) Yuan, G.; Shao, K. Z.; Wang, X. L.; Lan, Y. Q.; Du, D. Y.; Zhong, M. S. A series of novel chiral lanthanide coordination polymers with channels constructed from 16Ln-based cage-like building units. CrystEngComm. 2010, 12, 1147–1152. (b) Yuan, G.; Shao, K. Z.; Du, D. Y.; Wang, X. L.; Zhong, M. S. Syntheses, structures, and photoluminescence of d10 coordination architectures: from 1D to 3D complexes based on mixed ligands. Solid State Sciences 2011, 13, 1083–1091.
(20)Shi, W.; Chen, X. Y.; Xu, N.; Song, H. B.; Zhao, B.; Cheng, P.; Liao, D. Z.; Yan, S. P. Synthesis, crystal structures, and magnetic properties of 2D manganese(II) and 1D gadolinium(III) coordination polymers with 1H-1,2,3-triazole-4,5-dicarboxylic acid. Eur. J. Inorg. Chem. 2006, 4931–4937.
(21)Wang, S.; Zhao, T. T.; Li, G. H.; Wojtas, L.; Huo, Q. S.; Eddaoudi, M.; Liu, Y. L. From metal-organic squares to porous zeolite-like supramolecular assemblies. J. Am. Chem. Soc. 2010, 132, 18039–18041.
(22)Net, G.; Bayón, J. C.; Esteban, P.; Rasmussen, P. G.; Alvarez-Larena, A.; Piniella, dinuclear rhodium(I) and iridium(I) dicarboxytriazolate complexes and their oxidation products. Crystal structures of [NBu4][Rh2(Dcbt)(CO)4]·0.4CH2C12 and [NBu4][Rh2(Dcbt)(CO)2(PPh3)2]. Inorg. Chem. 1993, 32, 5313–5321.
(23)SMART and SAINT. Area Detector Control and Integration Software. Siemens analytical X-ray systems, Inc., Madison, WI 1996.
(24)Sheldrick, G. M. SHELXTL V5. 1. Software Reference Manual. AXS Bruker, Inc., Madison, Wisconsin, USA 1997.
(25)Xu, J. T.; Jung, K.; Boyer, C. Oxygen tolerance study of photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization mediated by Ru(bpy)3Cl2. Macromolecules 2014, 47, 4217−4229.
(26)Jonas, M.; Blechert, S.; Steckhan, E. Photochemically induced electron transfer (PET) catalyzed radical cyclization: a practical method for inducing structural changes in peptides by formation of cyclic amino acid derivatives. J. Org. Chem. 2001, 66, 6896–6904.
(27)Ashokkumar, P.; Ramakrishnan, V. T.; Ramamurthy, P. Photoinduced electron transfer (PET) based Zn2+ fluorescent probe: transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile. J. Phys. Chem. A 2011, 115, 14292–14299.
(28)Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Taglietti, A. A zinc(II)-driven intramolecular photoinduced electron transfer. Inorg. Chem. 1996, 35, 1733–1736.
(29)Thederahn, T. B.; Kuwabara, M. D.; Larsen, T. A.; Sigman, D. S. Nuclease activity of 1,10-phenanthroline-copper: kinetic mechanism. J. Am. Chem. Soc. 1989, 111, 4941–4946.
(30)Humphreys, K. J.; Karlin, K. D.; Rokita, S. E. Efficient and specific strand scission of DNA by a dinuclear copper complex: comparative reactivity of complexes with linked tris(2-pyridylmethyl)amine moieties. J. Am. Chem. Soc. 2002, 124, 6009–6019.
(31)Dhar, S.; Senapati, D.; Das, P. K.; Chattopadhyay, P.; Nethaji, M.; Chakravarty, A. R. Ternary copper complexes for photocleavage of DNA by red light: direct evidence for sulfur-to-copper charge transfer and d-d band involvement. J. Am. Chem. Soc. 2003, 125, 12118–12124.
(32)Sun, H.; Yang, W. Q.; He, W. J.; Guo, Z. J. Oxidative DNA cleavage mediated by copper complexes. Chem. J. Chin. Uni. 2011, 32, 437–450. |