Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed to the charge transfer between the GO and Cu atom, resulting in an activated Cu atom. In the ER mechanism, the CO molecules directly react with the activated O2, then forming a metastable carbonate-like intermediate state (OOCO). The reaction may proceed via two reaction paths of OOCO → CO2 + O and CO + OOCO → 2CO2, respectively. The calculated results show that the latter path is relatively more thermodynamically favorable with a modest energy barrier, so it should be more preferred. We expect our theoretical predictions to open a new avenue to fabricate carbon-based catalysts for CO oxidation with lower cost and higher activity.
Abstract:Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed to the charge transfer between the GO and Cu atom, resulting in an activated Cu atom. In the ER mechanism, the CO molecules directly react with the activated O2, then forming a metastable carbonate-like intermediate state (OOCO). The reaction may proceed via two reaction paths of OOCO → CO2 + O and CO + OOCO → 2CO2, respectively. The calculated results show that the latter path is relatively more thermodynamically favorable with a modest energy barrier, so it should be more preferred. We expect our theoretical predictions to open a new avenue to fabricate carbon-based catalysts for CO oxidation with lower cost and higher activity.
This project was supported by the National Natural Science Foundation of China (No. 21004009) and the Foundation of Jiangxi Educational Committee (No. GJJ14485)
通讯作者:
黄斌
E-mail: binhuang@xmu.edu.cn
引用本文:
黄斌;辛育东;陈荣. CO Catalytic Oxide over Cu Atom Supported on Graphene Oxides from the First Principles[J]. 结构化学, 2015, 34(4): 624-631.
HUANG Bin;XIN Yu-Dong;CHEN Rong. CO Catalytic Oxide over Cu Atom Supported on Graphene Oxides from the First Principles. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2015, 34(4): 624-631.
REFERENCES
(1)Nakai, I.; Kondoh, H.; Amemiya, K.; Nagasaka, M.; Ohta, T. Reaction-path switching induced by spatial-distribution change of reactants: CO oxidation on Pt(111). J. Chem. Phys. 2004, 121, 5035(1)5035(5).
(2)Nakai, I.; Kondoh, H.; Shimada, T.; Resta, J.; Andersen, N.; Ohta, T. Mechanism of CO oxidation reaction on O-covered Pd(111) surfaces studied with fast X-ray photoelectron spectroscopy: change of reaction path accompanying phase transition of O domains. J. Chem. Phys. 2006, 124, 224712(1)24712(9).
(3)Krenn, G.; Bako, I.; Schennach, R. CO adsorption and CO and O coadsorption on Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory. J. Chem. Phys. 2006, 124, 144703(1)144703(13).
(4)Kimble, M. L.; Castleman, A. W.; Mitric, R.; Bonacic, K. V. Reactivity of atomic gold anions toward oxygen and the oxidation of CO: experiment and theory. J. Am. Chem. Soc. 2004, 126, 25262535.
(5)Oh, S. H.; Hoflund, G. B. Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladiumoxide powders. J. Catal. 2007, 245, 3544.
(6)Zhang, C. J.; Baxter, R. J.; Hu, P.; Lee, M. H. A density functional theory study of carbon monoxide oxidation on the Cu3Pt(111) alloy surface: comparison with the reactions on Pt(111) and Cu(111). J. Chem. Phys. 2001, 115, 5272(1)5272(7).
(7)Molina, L. M.; Hammer, B. Site determination and thermally assisted tunneling in homogenous nucleation. Phys. Rev. Lett. 2003, 90, 206102(1)206102(4).
(8)Dupont, C. L.; Loffreda, D.; Delbecq, F. O.; Jugnet, Y. A high pressure PM-IRRAS study of CO and O2 coadsorption and reactivity on PtSn alloy surfaces. J. Phys. Chem. C 2008, 112, 1086210867.
(9)Chang, C. M.; Cheng, C.; Wei, C. M. CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008, 128, 124710(1)124710(5).
(10)Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 14871491.
(11)Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20, 28012806.
(12)Song, E. H.; Wen, Z.; Jiang, Q. CO catalytic oxidation on copper-embedded graphene. J. Phys. Chem. C 2011, 115, 36783683.
(13)Lu, Y. H.; Zhou, M.; Zhang, C.; Feng, Y. P. Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 2009, 113, 2015620160.
(14)Li, Y.; Zhou, Z.; Yu, G.; Chen, W.; Chen, Z. CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 2010, 114, 62506254.
(15)Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6, 711723.
(16)Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22, 39063924.
(17)Wei, Z. Q; Wang, D.; Kim, S.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z.; Sheehan, P. E.; Riedo, E. Nanoscal tunable reduction of grapheme oxide for grapheme electronics. Science 2010, 328, 13731376.
(18)Wang, S.; Pu, J.; Chan, D. S. H.; Cho, B. J.; Loh, K. P. Wide memory window in graphene oxide charge storage nodes. Appl. Phys. Lett. 2010, 96, 143109(1)143109(3).
(19)Myung, S.; Park, J.; Lee, H.; Kim, K. S.; Hong, S. Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv. Mater. 2010, 22, 20452049.
(20)Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 10151024.
(21)Zhang, N.; Qiu, H.; Wang, W.; Li, Y.; Wang, X. D.; Gao, J. P. Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J. Mater. Chem. 2011, 21, 1108011083.
(22)Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene: a synergetic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780786.
(23)Ming, Y.; Zhou, M.; Zhang, A.; Zhang, C. Graphene oxide: an ideal support for gold nanocatalysts. J. Phys. Chem. C 2012, 116, 2233622340.
(24)Li, F. Y.; Zhao, J. J.; Chen, Z. F. Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 2012, 116, 25072514.
(25)Delley, B. From molecules to solids with the Dmol3 approach. J. Chem. Phys. 2000, 113, 77567764.
(26)Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 38653868.
(27)Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125155134.
(28)Henkelman, G.; Johsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 99789985.
(29)Lu, N.; Huang, Y.; Li, H.; Li, Z.; Yang, J. First principles nuclear magnetic resonance signatures of graphene oxide. J. Chem. Phys. 2010, 133, 034502(1)034502(6).
(30)Wang, L.; Lee, K.; Sun, Y. Y.; Lucking, M.; Chen, Z.; Zhao, J. J.; Zhang, S. B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 2009, 3, 29953000.