Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study" />
Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study" />
1,2-benzothiazine,B3LYP/6-31+G(d),density functional theory (DFT),HUMO-LUMO,cyrstal structure,"/>
Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study
1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide (1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2H-benzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide (2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared (IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3LYP method of density functional theory (DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA) and coefficients of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of compounds 1 and 2 were simulated for the first time.
1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide (1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2H-benzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide (2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared (IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3LYP method of density functional theory (DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential (IP), Electron Affinities (EA) and coefficients of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of compounds 1 and 2 were simulated for the first time.
This project was funded by the Saudi Basic Industries Corporation (SABIC) and the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (MS/15/396/1434)
The authors, therefore, acknowledge with thanks SABIC and DSR technical and financial support
通讯作者:
E-mail: mnachemist@hotmail.com and mnarshad@kau.edu.sa for MUHAMMAD Nadeem Arshad,
and mahmood@ciit.net.pk for TARIQ Mahmood
E-mail: mahmood@ciit.net.pk
引用本文:
.
Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study
[J]. 结构化学, 2015, 34(1): 15-25.
MUHAMMAD Nadeem Arshad;TARIQ Mahmood;ATHER Faroque Khan;MUHAMMAD Zia-Ur-Rehman;ABDULLAH M. Asiri;ISLAM Ullah Khan;RIFFAT-Un-Nisa;KHURSHID Ayub;AZAM Mukhtar;MUHAMMAD Tariq Saeed.
Synthesis, Crystal Structure and Spectroscopic Properties of 1,2-Benzothiazine Derivatives: An Experimental and DFT Study
. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2015, 34(1): 15-25.
(2) Yaltirik, M.; Oral, C. K.; Oral, I.; Kasaboglu, G.; Cebi, V. Comparison by magnetic resonance imaging of the effects of two different non-steroidal anti-inflammatory drugs on edema following the surgical extraction of impacted third molars. Turk. J. Med. Sci. 2001, 31, 151–154.
(3) Park, M. S.; Chang, E. S.; Lee, M. S.; Kwon, S. K. Microwave promoted regeneration of carbonyl compounds from oximes using N,N-dichloro poly(styrene-co-divinylbenzene)sulphonamide resin. Bull. Korean Chem. Soc. 2002, 23, 1836–1838.
(4) Ofman, J. J.; Maclean, C. H.; Straus, W. L.; Morton, S. C.; Berger, M. L.; Roth, E. A.; Shekelle, P. G. Meta-analysis of dyspepsia and nonsteroidal antiinflammatory drugs. Arthritis Care Res. 2003, 49, 508–518.
(5) Braun, J. V. Uber benzo-polymethylen-verbindungen, X.: oxydativer abbau von tetralin und substituierten tetralinen zu phthalonsauren und phthalsauren. Chem. Ber. 1923, 56, 2332–2343.
(8) Barange, D. K.; Nishad, T. C.; Swamy, N. K.; Bandameedi, V.; Kumar, D. A. Remarkable accelerating effect of Ag-salt on intramolecular cyclization of o-(1-alkynyl)benzenesulfonamides. J. Org. Chem. 2007, 72, 8547–8550.
(11) Gupta, R. R.; Kumar, R.; Gutam, R. K. Synthesis of new fluorinated 4H-1,4-benzothiazines as possible anticancer agents. J. Fluorine Chem. 1985, 28, 381–385.
(12) Wammack, R.; Remzi, M.; Seitz, C.; Djavan, B.; Marberger, M. Efficacy of oral doxepin and piroxicam treatment for interstitial cystitis. Eur. Urol. 2002, 41, 596–601.
(13) Malagu, K.; Boustie, J.; David, M.; Sauleau, J.; Amoros, M.; Girre, R. L.; Sauleau, A. Synthesis and antiviral activity of new 1, 4-benzothiazines: sulphoxides and sulphone derivatives. Pharm. Pharmacol. Commun. 1998, 4, 57–60.
(16) Zia-ur-Rehman, M.; Choudary, J. A.; Elsegood, M. R. J.; Siddiqui, H. L.; Khan, K. M. A facile synthesis of novel biologically active 4-hydroxy-N′-(benzylidene)-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxides. Eur. J. Med. Chem. 2009, 44, 1311–1316.
(17) Takemoto, I.; Yamasaki, K.; Kaminaka, H.; Biosci. H. Synthesis of a fluorobenzoxazine and its analogs. Bioscience, Biotech. Biochem. 1994, 58, 788–789.
(18) Schroter, G. P.; Hoelscher, M.; Putman, C. W.; Porter, K. A.; Starzl, T. E. Fungus infections after liver transplantation. Ann. Surg. 1977, 186, 115–122.
(19) Lombardino, J. G.; Wiseman, E. H. Piroxicam and other anti-inflammatory oxicams. Med. Res. Rev. 1982, 2, 127–152.
(21) Pal, S.; Bindu, P.; Dubey, P. K.; Chakraborty, S.; Mukherjee, A. K. Synthesis and structure analysis of cyclodehydration product of piroxicam: a metabolite detected in dogs and monkeys. Eur. J. Med. Chem. 2009, 44, 3368–3371.
(22) Vrecer, F.; Srcic, S.; Korbar, J. S. Investigation of piroxicam polymorphism. Int. J. Pharm. 1991, 68, 35–41.
(23) Sheth, A. R.; Lubach, J. W.; Munson, E. J.; Muller, F. X.; Grant, D. J. W. Mechanochromism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. J. Am. Chem. Soc. 2005, 127, 6641–6651.
(24) Vrecer, F.; Vrbinc, M.; Meden, A. Characterization of piroxicam crystal modifications. Intl. J. Pharm. 2003, 256, 3–15.
(29) Arshad, M. N.; Şahin, O.; Zia-ur-Rehman, M.; Shafiq, M.; Khan, I. U.; Asiri, A. M.; Khan, S. B.; Alamry, K. A. Crystallographic studies of dehydration phenomenon in methyl 3-hydroxy-2-methyl-1,1,4-trioxo-1,2,3,4-tetrahydro-1λ6-benzo[e][1,2]thiazine-3-carboxylate. J. Chem. Cryst. 2013, 43, 671–677.
(32) Arshad, M. N.; Zia-Ur-Rehman, M.; Khan, I. U. Methyl 2-ethyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide. Acta Cryst. E 2010, 66, po1070–po1070.
(33) Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122.
(34) Farrugia, L. J. ORTEP-3 for Windows. J. Appl. Crystallog. 1997, 30, 565.
(35) Farrugia, L. J. WINGX-A Windows Program for Crystal Structure Analysis. University of Glasgow 1998.
(36) Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 30, 837–838.
(37) Spek, A. L. PLATON-A Multipurpose Crystallographic Tool. Utrecht, Utrecht University, The Netherlands 2005.
(38) Macrae, C. F.; Edgington, P. R.; Mccabe, P.; Pidcock, E.; Shields. G. P.; Taylor, R.; Towler, M.; Van de Streek, J. Mercury. J. Appl. Cryst. 2006, 39, 453–457.
(39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox. D. J. Gaussian, Inc., Wallingford CT 2010, Gaussian 09, Revision C.01.
(40) Roy, D.; Todd, K.; John, M. Semichem, Inc., Shawnee Mission, KS, 2009. GaussView, Version 5.
(41) Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566.
(42) Cremer, D.; Pople, J. A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358.
(43) Li, Y.; Li, Y.; Wang, H.; Xiong, X.; Wei, P.; Li, F. Synthesis, crystal structure, vibration spectral, and DFT studies of 4-aminoantipyrine and its derivatives. Molecules 2013, 18, 877–893.